Summary

Syntes av nio atom Deltahedral Zintl Joner av germanium och deras funktionalisering med organiska grupper

Published: February 11, 2012
doi:

Summary

Vi presenterar hög temperatur syntes av intermetalliska prekursorer K<sub> 4</sub> Ge<sub> 9</sub>, Att deras upplösning i etylendiamin bilda Ge<sub> 9</sub<sup> 4 -</sup> Deltahedral Zintl joner och reaktionen av kluster med alkyner att bilda organiska Zintl joner. Den senare kännetecknas av elektrospraymasspektrometri i lösningar och genom enkristall-röntgen-diffraktion i fast tillstånd.

Abstract

Även om de första studierna av Zintl joner datum mellan slutet av 1890-talet och början av 1930-talet att de inte strukturellt förrän många år senare. 1,2 Deras redox kemi är ännu yngre, bara omkring tio år gammal, men trots detta korta historia dessa deltahedral kluster joner E 9 N-(E = Si, Ge, Sn, Pb, n = 2, 3, 4). har redan visat intressanta och varierande reaktivitet och har varit i spetsen för snabbt växande och spännande ny kemi 3-6 Noterbara milstolpar är den oxidativa kopplingen av Ge 9 4 – kluster till oligomerer och oändliga kedjor, 7-19 deras metalleringsreaktioner och 14-16,20-25 capping med övergången metall metallorganiska fragment, 26-34 införande av en övergångsmetall atom i mitten av klustret som ibland kombineras med ett tak och oligomerisering, 35-47 tillsättning av huvud-grupp metallorganiska fragment som exo-bundna substituenter,48-50 och funktionalisering med olika organiska rester genom reaktioner med organiska halogenider och alkyner. 51-58

Denna senare utveckling av fästa organiska fragment direkt till kluster har öppnat ett nytt fält, nämligen organiska Zintl kemi, som är potentiellt fruktbar för ytterligare syntetiska utforskning, och det är steg-för-steg förfarande för syntes av germanium-divinyl kluster som beskrivs häri. De initiala stegen beskriva syntesen av en intermetallisk prekursor av K 4 Ge 9 från vilken Ge 9 4 – kluster extraheras senare i lösning. Detta involverar kvartsglas glasblåsning, båg-svetsning av niobium behållare och hantering av mycket luftkänsliga material i en handskbox. Luften känsliga K 4 Ge 9 löses sedan i etylendiamin i rutan och sedan alkenyleras genom en reaktion med mig 3 SiC ≡ CSiMe 3. Reaktionsförloppet följs genom elektrotrospray masspektrometri medan den resulterande lösningen används för att erhålla enskilda kristaller innehållande de funktionaliserade kluster [H2C = CH-Ge-9-CH = CH 2] 2 -. För detta ändamål lösningen centrifugeras, filtrerades och skiktades försiktigt med en toluen-lösning av 18-kron-6. Lämnas orörd under några dagar, producerade de så skiktade lösningarna orange kristallint block av [K (18-kron-6)] 2 [Ge 9 (konferensen 2) 2] • S som karaktäriserades genom enkristall-röntgendiffraktion .

Processen belyser vanliga reaktion tekniker, upparbetning och analys gentemot funktionaliserade deltahedral Zintl kluster. Förhoppningen är att det kommer att bidra till ytterligare utveckling och förståelse av dessa föreningar i samhället i stort.

Protocol

1. Framställning Niobium Rör Innan du skär niob (Nb) rör, förbereda Nb-rengöringslösning. I en 500 ml plastflaska, mäta upp och tillsätt genom en 100 ml mätcylinder följande stamlösningar som mottagits: 110 ml H 2 SO4, följt av 50 ml HNO3, följt av 40 ml HF. Blanda väl och låt nå rumstemperatur före användning. Mäta den Nb röret, 4,5 cm i längd, och skärs med en kniv röret. Undvik att klämma slangen. Upprepa 3 gånger. I en väl ventilerad ån…

Discussion

Det är viktigt att rengöra och de delvis oxiderade Offline rör. Emellertid, om rören är kvar för länge i den Nb rengöringslösning, kommer detta äventyrar allvarligt tjocklek av röret. Således, 10 – 15 sekunder är absolut nödvändigt och rören bör vara mycket glänsande i slutet (Fig. 3). Efter det att rören är förseglade inuti det sintrade kiselglassubstratet manteln de skall rengöras igen med en utspädd Nb syralösning. Detta bör resultera i milda skumbildning, rengöring alla oxiderade områden O…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Författarna vill tacka National Science Foundation för fortsatt ekonomiskt stöd (CHE-0.742.365) och för inköp av en Bruker APEX II diffraktometer (CHE-0.443.233) och en Bruker Microtof-II masspektrometer (CHE-0.741.793). Författarna vill också tacka CEST anläggning för deras användning av Micromass Quattro-LC masspektrometer.

Materials

Name of the reagent Company Catalogue number Comments
D8-Xray diffractometer Bruker Bruker APEX II  
Electrospray mass spectrometer Bruker Microtof-II  
Electrospray mass spectrometer Micromass Quattro-LC triple -quadropole
Drybox Innovative Technology S-1-M-DL IT-Sys1 model
Inert Gas/Vacuum Shielded
Arc Welding Arrangement
LDS Vacuum Products Special Order
Arc Welder Power Source Miller Maxstar-91  
Welding Rubber Gloves The Home Depot  KH643  
Electric Engraver Burgess Products 74 Vibro-Graver
Circular Glass Saw Pistorius Machine Co. Inc GC-12-B  
Tube Furnace Lindberg/Blue M TF55035 Minimite Laboratory Tube Furnace, Moldatherm (1100 °C)
Glass Drying Oven Fisher Scientific 13-247-650G  
High Vacuum Hg Schlenk-Line Special Order Univ Of Notre Dame Alternative: Edwards E050/60; VWR International; Cat. No. EVB302-07-110
Large Torch Victor JT100C Welding torch, tip: Victor 5-W-J
Small Torch Veriflo Co. 3A Blow-pipe
Tesla Coil VWR International KT691550-0000 Leak detector
Stirrer/Hot -Plate VWR International 12620-970 VWR HOT PLATE STR DY-DUAL120V
Balance Denver Instrument Co. 100A XE Series
Centrifuge LW Scientific E8C-08AV-1501 Variable speed
Graphite Reamer, (flaring) ABR Imagery, Inc. 850-523 B01 Open holes in Glass Blowing and flaring edges
Striker Fisher Scientific 12-007  
Vise-Grips The Home Depot 0902L3SM  
Pipe-Cutter The Home Depot 32820  
Cutting Pliers The Home Depot 437  
Plastic Beaker VWR International 13890-046  
Measuring Cylinder VWR International 65000-006 Careful, HF etches glass (if using a glass one)
Large Plastic Bottle VWR International 16128-542  
13 x 100 Test-Tubes VWR International 47729-572 CULTURE TUBE 13X100 CS1000
Laboratory (Rubber) Stoppers Sigma Chemical Co. Z164437-100EA Size 00
Test-Tube Rack VWR International 60196-702 10-13 mm tube OD
Stir-Bars StirBars.com/Big Science Inc. SBM-0803-MIC PTFE 8×3 mm Micro
Glass Pipettes VWR International 14673-043 VWR PIPET PASTEUR 9IN CS1000
Rubber Bulbs VWR International 56311-062 Latex, thin walled
Glass Wool Unifrax I LLC 6048 Fiberfrax Bulk Fiber Insulation, Ceramic fiber
Glass Slides VWR International 16004-422 75x25x1mm, Microscope Slides
Paratone-N oil Hampton Research Parabar 10312 Known as: Paratone-N, Paratone-8277, Infineum V8512
High Vacuum Silicone Grease VWR International 59344-055 Dow Corning
Liquid Nitrogen Univ. of Notre Dame    
Argon Gas Cylinder Praxair Distribution Inc. TARGHP  
Nitrogen Gas Cylinder Praxair Distribution Inc. QNITPP  
Oxygen Gas Cylinder Praxair Distribution Inc. OT 337 cf CYL
Hydrogen Gas Cylinder Praxair Distribution Inc. HK 195 cf CYL
Propane Gas Cylinder/source Univ. of Notre Dame UND  
Quartz tubing, Lg Quartz Scientific Inc. 100020B 20 mm id x 22mm od x 48″ clear fused quart tubing
Quartz tubing, Md Quartz Scientific Inc. 100007B Clear Fused Quartz Tubing,7mm id x 9mm od x 48″
Round Bottom Quartz Joint Quartz Scientific Inc. 6160189B Ball joint
Quartz Safety Glasses Wale Apparatus 11-1127 waleapparatus.com
Pyrex Safety Glasses Wale Apparatus 11-2125-B3 For clear and color borosilicate glass
Blow Hose Kit Glass House BH020 glasshousesupply.com
Niobium Tubes Shaanxi Tony Metals Co., Ltd Niobium Tube, 50 ft Seamless Niobium Tube Outside diameter: 0.375 (±0.005) inches.
Wall thickness: 0.02(±0.003) Inches Niobium should be annealed.
PEEK Starter Kit for Mass Spect Waters PSL613321 PEEK (PolyEtherEtherKetone) tubing, nuts, ferrule, fits
Mass Spect Needle Set VWR International 60373-992 Hamilton Manufacturer (81165)
H2SO4 VWR International BDH3072-2.5LG ACS Grade
HNO3 VWR International BDH3046-2.5LPC ACS Grade
HF VWR International BDH3040-500MLP ACS Grade
Distilled Water Univ. of Notre Dame UND  
Acetone VWR International BDH1101-4LP  
Ethylenediamine VWR International AAA12132-0F 99% 2.5 L
Toluene VWR International 200004-418 99.8 %, anhydrous
Mercury Strem Chemicals, Inc. 93-8046  
Potassium (K) metal Strem Chemicals, Inc. 19-1989 Sealed in glass ampoule under Ar
Germanium (Ge) powder VWR International AA10190-18 GERM PWR -100 MESH 99.999% 50G
Bistrimetylsilylacetylene,
(Me3SiC≡CCSiMe3)
Fischer Scientific AC182010100  
18-crown-6
(1,4,7,10,13,16-Hexaoxacyclooctadecane)
VWR International 200001-954 99%, 25 gm
2,2,2-crypt
(4,7,13,16,21,24-Hexaoxa-1,10 diazabicyclo[8.8.8]hexacosane)
Sigma Aldrich 291110-1G 98%

References

  1. Corbett, J. D. Polyatomic Zintl Anions of the Post-Transition Elements. Chem. Rev. 85, 383-397 (1985).
  2. Fässler, T. F. The renaissance of homoatomic nine-atom polyhedral of the heavier carbon-group elements Si-Pb. Coord. Chem. Rev. 215, 347-377 (2001).
  3. Sevov, S. C., Goicoechea, J. M. Chemistry of Deltahedral Zintl Ions. Organometallics. 25, 5678-5692 (2006).
  4. Sevov, S. C., Davies, A. G. . Tin Chemistry: Fundamentals, Frontiers and Applications. , 138-151 (2008).
  5. Scharfe, S., Fässler, T. F. Polyhedral nine-atom clusters of tetrel elements and intermetalloid derivatives. Phil. Trans. R. Soc. A. , 368-1265 (2010).
  6. Scharfe, S., Kraus, F., Stegmaier, S., Schier, A., Fässler, T. F. Zintl Ions, Cage Compounds, and Intermetalloid Clusters of Group 14 and Group 15 Elements. Angew. Chem. Int. Ed. 50, 3630-3670 (2011).
  7. Xu, L., Sevov, S. C. Oxidative Coupling of Deltahedral [Ge9]4- Zintl Ions. J. Am. Chem. Soc. 121, 9245-9246 (1999).
  8. Hauptmann, R., Fässler, T. F. Low Dimensional Arrangements of the Zintl Ion [Ge9-Ge9]6- and Chemical Bonding in [Ge6]2-, [Ge9=Ge9]6- and 1∞{[Ge9]}2-. Z. Anorg. Allg. Chem. 629, 2266-2273 (2003).
  9. Suchentrunk, C., Daniels, J., Somer, M., Carrillo-Cabrera, W., Korber, N. Synthesis and Crystal Structures of the Polygermanide Ammoniates K4Ge9•9NH3, Rb4Ge9•5NH3 and Cs6Ge18•4NH3. Z. Naturforsch. 60b, 277-283 (2005).
  10. Ugrinov, A., Sevov, S. C. Ge9=Ge9=Ge9]6-: A Linear Trimer of 27 Germanium Atoms. J. Am. Chem. Soc. 124, 10990-10991 (2002).
  11. Yong, L., Hoffmann, S. D., Fässler, T. F. The Controlled Oxidative coupling of Ge94- Zintl Anions to a Linear Trimer [Ge9=Ge9=Ge9]6. Z. Anorg. Allg. Chem. 631, 1149-1153 (2005).
  12. Ugrinov, A., Sevov, S. C. Ge9=Ge9=Ge9=Ge9]8-: A Linear Tetramer of Nine-Atom Germanium Clusters, a Nanorod. Inorg. Chem. 42, 5789-5791 (2003).
  13. Yong, L., Hoffmann, S. D., Fässler, T. F. Oxidative Coupling of Ge94- Zintl Anions – Hexagonal Rod Packing of Linear [Ge9=Ge9=Ge9=Ge9]8-. Z. Anorg. Allg. Chem. 630, 1977-1981 (2004).
  14. Denning, M. S., Goicoechea, J. M. [Hg3(Ge9)4]10-: a nanometric molecular rod precursor to polymeric mercury-linked cluster chains. Dalton Trans. , 5882-5885 (2008).
  15. Boeddinghaus, M. B., Hoffmann, S. D., Fässler, T. F. Synthesis and Crystal Structure of [K([2,2,2]crypt)]2[HgGe9](dmf). Z. Annorg. Allg. Chem. 633, 2338-2341 (2007).
  16. Nienhaus, A., Hauptmann, R., Fässler, T. F. 1∞[HgGe9]2- –A Polymer with Zintl Ions as Building Blocks Covalently Linked by Heteroatoms. Angew. Chem., Int. Ed. 41, 3213-3215 (2002).
  17. Downie, C., Tang, Z., Guloy, A. M. An Unprecedented 1∞[Ge9]2- Polymer: A Link between Molecular Zintl Clusters and Solid-State Phases. Angew. Chem., Int. Ed. 39, 337-340 (2000).
  18. Downie, C., Mao, J. -. G., Parmar, H., Guloy, A. M. The Role of Sequestering Agents in the Formation and Structure of Germanium Anion Cluster Polymers. Inorg. Chem. 43, 1992-1997 (2004).
  19. Ugrinov, A., Sevov, S. C. Synthesis of a chain of nine-atom germanium clusters accompanied with dimerization of the sequestering. 8, 1878-1882 (2005).
  20. Spiekermann, A., Hoffmann, S. D., Kraus, F., Fässler, T. F. Au3Ge18]5- – Gold-Germanium Cluster with Remarkable Au-Au Interactions. Angew. Chem., Int. Ed. 46, 1638-1640 (2007).
  21. Spiekermann, A., Hoffmann, S. D., Fässler, T. F., Krossing, I., Preiss, U. [Au3Ge45]9-–A Binary Anion Containing a {Ge45}. Cluster. Angew. Chem., Int. Ed. 46, 5310-5313 (2007).
  22. Wang, J. -. Q., Wahl, B., Fässler, T. F. [Ag(Sn9-Sn9)]5-: A Homoleptic Silver Complex of A Dimeric Sn9 Zintl Anion. Angew. Chem., Int. Ed. 49, 6592-6595 (2010).
  23. Scharfe, S., Fässler, T. F. VVarying Bonding Modes of the Zintl Ion [Ge9]4- in CuI Complexes: Syntheses and Structures of [Cu(η4-Ge9)(PR3)]3- (R = iPr, Cy) and [Cu(η4-Ge9)(η1-Ge9)]7-. Eur. J. Inorg. Chem. 8, 1207-1213 (2010).
  24. Yong, L., Boeddinghaus, M. B., Fässler, T. F. [Sn9HgSn9]6-: An Intermetalloid Zintl Ion with Two Sn9 Connected by Heteroatom. Z. Anorg. Allg. Chem. 636, 1293-1296 (2010).
  25. Rios, D., Gillett-Kunnath, M. M., Taylor, J. D., Oliver, A. G., Sevov, S. C. Addition of a Thallium Vertex to Empty and Centered Nine-Atom Deltahedral Zintl Ions of Germanium and Tin. Inorg. Chem. 50, 2373-2377 (2011).
  26. Eichhorn, B. W., Haushalter, R. C. Synthesis and Structure of closo-Sn9Cr(CO)34-: The First Member in a New Class of Polyhedral Clusters. J. Amer. Chem. Soc. 110, 8704-8706 (1988).
  27. Eichhorn, B. W., Haushalter, R. C. closo-[CrPb9(CO)3]4-: a 100 Year History of the Nonaplumbide Tetra-anion. J. Chem. Soc. Chem. Commun. , 937-938 (1990).
  28. Kesanli, B., Fettinger, J., Eichhorn, B. W. The closo-[Sn9M(CO)3]4- Zintl Ion Clusters where M = Cr, Mo, W: Two Structural Isomers and Their Dynamic Behavior. Chem. Eur. J. 7, 5277-5285 (2001).
  29. Kesanli, B., Fettinger, J., Gardner, D. R., Eichhorn, B. . The [Sn9Pt2(PPh3)]2- and [Sn9Ni2(CO)]3- Complexes: Two Markedly Different Sn9M2L Transition Metal Zintl Ion Clusters and Their Dynamic. 124, 4779-4788 (2002).
  30. Campbell, J., Mercier, H. P. A., Holger, F., Santry, D. P., Dixon, D. A., Schrobilgen, G. J. Syntheses, Crystal Structures, and Density Functional Theory Calculations of the closo-[1-M(CO)3(η4-E9)4- (E = Sn, Pb; M = Mo, W) Cluster Anions and Solution NMR Spectroscopic Characterization of [1-M(CO)3(η4-Sn9)4- (M = Cr, Mo, W). Inorg. Chem. 41, 86-107 (2002).
  31. Yong, L., Hoffmann, S. D., Fässler, T. F. Crystal Structures of [K(2.2.2-crypt)]4[Pb9Mo(CO)3]–Isolation of the Novel Isomers [(η5-Pb9)Mo(CO)3]4- beside [(η4-Pb9)Mo(CO)3]4. Eur. J. Inorg. Chem. , 3663-3669 (2005).
  32. Esenturk, E. N., Fettinger, J., Eichhorn, B. Synthesis and characterization of the [Ni6Ge13(CO)5]4- and [Ge9Ni2(PPh3)]2- Zintl ion clusters. Polyhedron. 25, 521-529 (2006).
  33. Rios, D., Sevov, S. C. The Elusive closo-Ge102- Zintl Ion: Finally “Captured” as a Ligand in the Complex [Ge10Mn(CO)4]3-. Inorg. Chem. 49, 6396-6398 (2010).
  34. Downing, D. O., Zavalij, P., Eichhorn, B. W. The closo-[Sn9Ir(cod)]3- and [Pb9Ir(cod)]3- Zintl Ions: Isostructural IrI Derivatives of the nido-E94- Anions (E = Sn, Pb). Eur. J. Inorg. Chem. , 890-894 (2010).
  35. Esenturk, E. N., Fettinger, J., Lam, Y. -. F., Eichhorn, B. Pt@Pb12]2-. Angew. Chem. Int. Ed. 43, 2132-2134 (2004).
  36. Goicoechea, J. M., Sevov, S. C. [(Ni-Ni-Ni)@(Ge9)2]4-: A Linear triatomic Nickel Filament Enclosed in a Dimer of Nine-Atom Germanium Clusters. Angew. Chem. Int. Ed. 44, 4026-4028 (2005).
  37. Goicoechea, J. M., Sevov, S. C. [(Pd-Pd)@Ge18]4-: A Palladium Dimer Inside the Largest Single-Cage Deltahedron. J. Am. Chem. Soc. 127, 7676-7677 (2005).
  38. Esenturk, E. N., Fettinger, J., Eichhorn, B. The closo-Pb102- Zintl ion in the [Ni@Pb10]2 cluster. Chem. Commun. , 247-249 (2005).
  39. Goicoechea, J. M., Sevov, S. C. Deltahedral Germanium Clusters: Insertion of Transition-Metal Atoms and Addition of Organometallic Fragments. J. Am. Chem. Soc. 128, 4155-4161 (2006).
  40. Esenturk, E. N., Fettinger, J., Eichhorn, B. W. Synthesis, Structure, and Dynamic Properties of [Ni2Sn17]4. J. Am. Chem. Soc. 128, 12-13 (2006).
  41. Esenturk, E. N., Fettinger, J., Eichhorn, B. W. The Pb122- and Pb102- Zintl Ions and the M@Pb122- and M@Pb102- Cluster Series Where M = Ni, Pd, Pt. J. Am. Chem. Soc. 128, 9178-9186 (2006).
  42. Kocak, F. S., Zavalij, P., Lam, Y. F., Eichhorn, B. W. Solution Dynamics and Gas-Phase Chemistry of Pd2@Sn184. Inorg. Chem. 47, 3515-3520 (2008).
  43. Scharfe, S., Fässler, T. F., Stegmaier, S., Hoffmann, S. D., Ruhland, K. [Cu@Sn9]3- and [Cu@Pb9]3-: Intermetalloid Clusters with Endohedral Cu Atoms in Spherical Environments. Chem. Eur. J. 14, 4479-4483 (2008).
  44. Zhou, B., Denning, M. S., Kays, D. L., Goicoechea, J. M. Synthesis and Isolation of [Fe@Ge10]3-: A Pentagonal Prismatic Zintl Ion Cage Encapsulating an Interstitial Iron Atom. J. Am. Chem. Soc. 131, 2802-2803 (2009).
  45. Wang, J. -. Q., Stegmaier, S., Fässler, T. F. [Co@Ge10]3-: An Intermetalloid Cluster with Archimedean Pentagonal Prismatic Structure. Angew. Chem. Int. Ed. 48, 1998-2002 (2009).
  46. Wang, J. -. Q., Stegmaier, S., Wahl, B., Fässler, T. F. Step-by-Step Synthesis of the Endohedral Stannaspherene [Ir@Sn12]3- via the Capped Cluster Anion [Sn9Ir(cod)]3. Chem. Eur. J. 16, 1793-1798 (2010).
  47. Gillett-Kunnath, M. M. P. a. i. k., Jensen, J. I., Taylor, S. M., D, &. a. m. p. ;. J., Sevov, S. C. Metal-Centered Deltahedral Zintl Ions: Synthesis of [Ni@Sn9]4- by Direct Extraction from Intermetallic Precursors and of the Vertex-Fused Dimer [{Ni@Sn8(μ-Ge)1/2}2]4. Inorg. Chem. 50, 11695-11701 (2011).
  48. Ugrinov, A., Sevov, S. C. Ph2Bi-(Ge9)-BiPh2]2-: A Deltahedral Zintl Ion Functionalized by Exo-Bonded Ligands. J. Am. Chem. Soc. 124, 2442-2443 (2002).
  49. Ugrinov, A., Sevov, S. C. Derivatization of Deltahedral Zintl Ions by Nucleophilic Addition: [Ph-Ge9-SbPh2]2- and [Ph2Sb-Ge9-Ge9-SbPh2]4. J. Am. Chem. Soc. 125, 14059-14064 (2003).
  50. Ugrinov, A., Sevov, S. C. Rationally Functionalized Deltahedral Zintl Ions: Synthesis and Characterization of [Ge9-ER3]3-, [R3E-Ge9-ER3]2-, and [R3E-Ge9-Ge9-ER3]4- (E= Ge, Sn; R = Me, Ph). Chem. Eur. J. 10, 3727-3733 (2004).
  51. Hull, M., Ugrinov, A., Petrov, I., Sevov, S. C. Alkylation of Deltahedral Zintl Clusters: Synthesis of [R-Ge9-Ge9-R]4- (R = tBu, sBu, nBu, tAm) and Structure of [tBu-Ge9-Ge9-tBu]4. Inorg. Chem. 46, 2704-2708 (2007).
  52. Hull, M., Sevov, S. C. Addition of Alkenes to Deltahedral Zintl Clusters by Reaction with Alkynes: Synthesis and Structure of [Fc-CH=CH-Ge9-CH=CH-Fc]2-, an Organo-Zintl-Organometallic Anion. Angew. Chem. Int. Ed. 46, 6695-6698 (2007).
  53. Hull, M., Sevov, S. C. Organo-Zintl Clusters Soluble in Conventional Organic Solvents: Setting the Stage for Organo-Zintl Cluster Chemistry. Inorg. Chem. 46, 10953-10955 (2007).
  54. Chapman, D. J., Sevov, S. C. Tin-Based Organo-Zintl Ions: Alkylation and Alkenylation of Sn94. Inorg. Chem. 47, 6009-6013 (2008).
  55. Hull, M., Sevov, S. C. Functionalization of Nine-Atom Deltahedral Zintl Ions with Organic Substituents: Detailed Studies of the Reactions. J. Am. Chem. Soc. 131, 9026-9037 (2009).
  56. Kocak, F. S., Zavalij, P. Y., Lam, Y. -. F., Eichhorn, B. W. Substituent-dependent exchange mechanisms in highly fluxional RSn93- anions. Chem. Commun. , 4197-4199 (2009).
  57. Gillett-Kunnath, M. M., Petrov, I., Sevov, S. C. Heteroatomic Deltahedral Zintl Ions of Group 14 and their Alkenylation. Inorg. Chem. 48, 721-729 (2010).
  58. Gillett-Kunnath, M. M., Oliver, A. G., Sevov, S. C. “n-Doping” of Deltahedral Zintl Ions. J. Am. Chem. Soc. 133, 6560-6562 (2011).
  59. Gaumet, J. J., Strouse, G. F. Electrospray Mass Spectrometry of Semiconductor Nanoclusters: Comparative Analysis of Positive and Negative Ion Mode. J. Am. Soc. Mass. Spectrom. 11, 338-344 (2000).
  60. Fässler, T. F. Lone Pair Interactions in Zintl Phases: Band Structure and Real Space Analysis of the cP124 Clathrate Structure Type. Z. Anorg. Allg. Chem. 624, 569-577 (1998).
  61. Guloy, A. M., Ramlau, R., Tang, Z., Schnelle, W., Baitinger, M., Grin, Y. A guest-free germanium clathrate. Nature. 443, 320-323 (2006).
  62. Guloy, A. M., Tang, Z., Ramlau, R., Böhme, B., Baitinger, M., Grin, Y. Synthesis of the Clathrate-II K8.6(4)Ge136 by Oxidation of K4Ge9 in an Ionic Liquid. Eur. J. Inorg. Chem. 17, 2455-2458 (2009).
  63. Chandrasekharan, N., Sevov, S. C. Anodic Electrodeposition of Germanium Films from Ethylenediamine Solution of Deltahedral Ge94- Zintl Ions. J. Electrochem. Soc. 157, C140-C145 (2010).
  64. Zheng, W. J., Thomas, O. C., Lippa, T. P., Xu, S. J., Bowen, K. H. The Ionic KAl13 molecule: A stepping stone to cluster-assembled materials. J. Chem. Pys. 124, 144304-144304 (2006).
  65. Riley, A. E., Tolbert, S. H. Syntehsis and characterization of tin telluride inorganic/organic composite materials with nanoscale periodicity through solution-phase self-assembly: a new class of composite materials based on Zintl cluster self-oligomerization. Res. Chem. Intermed. 33, 111-124 (2007).
  66. Sun, D., Riley, A. E., Cadby, A. J., Richman, E. K., Korlann, S. D., Tolbert, S. H. Hexagonal nanoporous germanium through surfactant-driven self-assembly of Zintl Clusters. Nature. 441, 1126-1130 (2006).
check_url/3532?article_type=t

Play Video

Cite This Article
Gillett-Kunnath, M. M., Sevov, S. C. Synthesis of Nine-atom Deltahedral Zintl Ions of Germanium and their Functionalization with Organic Groups. J. Vis. Exp. (60), e3532, doi:10.3791/3532 (2012).

View Video