Summary

The Tail Suspension Test

Published: January 28, 2012
doi:

Summary

The tail-suspension test is validated as an experimental procedure to assess antidepressant efficacy of drug treatments in mice. Mice are suspended by their tails for six minutes and escape-related behaviors are assessed. We describe procedures used in conducting the tail suspension test.

Abstract

The tail-suspension test is a mouse behavioral test useful in the screening of potential antidepressant drugs, and assessing of other manipulations that are expected to affect depression related behaviors. Mice are suspended by their tails with tape, in such a position that it cannot escape or hold on to nearby surfaces. During this test, typically six minutes in duration, the resulting escape oriented behaviors are quantified. The tail-suspension test is a valuable tool in drug discovery for high-throughput screening of prospective antidepressant compounds. Here, we describe the details required for implementation of this test with additional emphasis on potential problems that may occur and how to avoid them. We also offer a solution to the tail climbing behavior, a common problem that renders this test useless in some mouse strains, such as the widely used C57BL/6. Specifically, we prevent tail climbing behaviors by passing mouse tails through a small plastic cylinder prior to suspension. Finally, we detail how to manually score the behaviors that are manifested in this test.

Protocol

1. Materials 1. Suspension Box The tail-suspension test (TST) involves suspending mice above the ground by their tails. At the most basic level, the procedure only requires a suspension bar or shelf ledge, and tape. However, the experimenter should consider the use of a background that provides optimal contrast. Additionally, it is prudent to take steps to prevent mice from observing other animals that are being tested. In our laboratory, we use specially manufactured t…

Discussion

Development of the TST by Steru et al.9 was influenced by the previously developed forced swim test10-12. Similar to the forced swim test, in the TST mice are placed in an inescapable but moderately stressful situation. Lack of escape related behavior is considered immobility. Like the forced swim test, the TST is a test best validated for the evaluation of antidepressant efficacy of drugs, but also used to evaluate the effects of environmental, neurobiological, and genetic manipulations<su…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This study has been supported by the grant NIHM R01 MH091816 and R21 MH084043 to TDG.

Materials

  • Tape
  • Timer
  • Video Camera
  • White Noise Generator (optional)
  • Climbstoppers (optional; depending upon strain used)

References

  1. Mayorga, A. J., Lucki, I. Limitations on the use of the C57BL/6 mouse in the tail suspension test. Psychopharmacology (Berl). 155, 110-112 (2001).
  2. Dao, D. T. Mood Disorder Susceptibility Gene CACNA1C Modifies Mood-Related Behaviors in Mice and Interacts with Sex to Influence Behavior in Mice and Diagnosis in Humans. Biological Psychiatry. 68, 801-810 (2010).
  3. Can, A. L. Antidepressant-like responses to lithium in genetically diverse mouse strains. Genes, Brain and Behavior. 10, 434-443 (2011).
  4. Bai, F., Li, X., Clay, M., Lindstrom, T., Skolnick, P. Intra- and interstrain differences in models of “behavioral despair”. Pharmacol. Biochem. Behav. 70, 187-192 (2001).
  5. Cervo, L. Genotype-dependent activity of tryptophan hydroxylase-2 determines the response to citalopram in a mouse model of depression. J. Neurosci. 25, 8165-8172 (2005).
  6. David, D. J., Renard, C. E., Jolliet, P., Hascoet, M., Bourin, M. Antidepressant-like effects in various mice strains in the forced swimming test. Psychopharmacology (Berl). 166, 373-382 (2003).
  7. Dulawa, S. C., Holick, K. A., Gundersen, B., Hen, R. Effects of chronic fluoxetine in animal models of anxiety and depression. Neuropsychopharmacology. 29, 1321-1330 (2004).
  8. Lucki, I., Dalvi, A., Mayorga, A. J. Sensitivity to the effects of pharmacologically selective antidepressants in different strains of mice. Psychopharmacology (Berl). 155, 315-322 (2001).
  9. Steru, L., Chermat, R., Thierry, B., Simon, P. The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology (Berl). 85, 367-370 (1985).
  10. Can, A., Dao, D. T., Arad, M., Terrillion, C. E., Piantadosi, S. C., Gould, T. D. The Mouse Forced Swim Test. J. Vis. Exp. 58, 3791-3638 (2012).
  11. Porsolt, R. D., Bertin, A., Jalfre, M. Behavioral despair in mice: a primary screening test for antidepressants. Arch. Int. Pharmacodyn. Ther. 229, 327-336 (1977).
  12. Porsolt, R. D., Anton, G., Blavet, N., Jalfre, M. Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur. J. Pharmacol. 47, 379-391 (1978).
  13. Crowley, J. J., Blendy, J. A., Lucki, I. Strain-dependent antidepressant-like effects of citalopram in the mouse tail suspension test. Psychopharmacology (Berl). 183, 257-264 (2005).
  14. Karolewicz, B., Paul, I. A. Group housing of mice increases immobility and antidepressant sensitivity in the forced swim and tail suspension tests. European Journal of Pharmacology. 415, 197-201 (2001).
  15. Lad, H. V., Liu, L., Paya-Cano, J. L., Fernandes, C., Schalkwyk, L. C. Quantitative traits for the tail suspension test: automation, optimization, and BXD RI mapping. Mammalian. Genome. 18, 482-491 (2007).
  16. Liu, X., Gershenfeld, H. K. Genetic differences in the tail-suspension test and its relationship to imipramine response among 11 inbred strains of mice. Biol. Psychiatry. 49, 575-581 (2001).
  17. Ripoll, N., David, D. J., Dailly, E., Hascoet, M., Bourin, M. Antidepressant-like effects in various mice strains in the tail suspension test.. Behav. Brain. Res.. 143, 193-200 (2003).
  18. Mineur, Y. S., Belzung, C., Crusio, W. E. Effects of unpredictable chronic mild stress on anxiety and depression-like behavior in mice. Behav. Brain. Res. 175, 43-50 (2006).
  19. Thierry, B., Stéru, L., Simon, P., Porsolt, R. D. The tail suspension test: Ethical considerations. Psychopharmacology. 90, 284-285 (1986).
  20. Cryan, J. F., Mombereau, C., Vassout, A. The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci. Biobehav. Rev. 29, 571-625 (2005).
  21. O’Leary, O. F., Cryan, J. F., Gould, T. D. . Mood and Anxiety Related Phenotypes in Mice. 42, 119-137 (2009).
  22. Detke, M. J., Johnson, J., Lucki, I. Acute and Chronic Antidepressant Drug Treatment in the Rat Forced Swimming Test Model of Depression. Experimental and Clinical Psychopharmacology. 5, 107-112 (1997).
  23. Rupniak, N. M. J. Animal models of depression: challenges from a drug development perspective. Behavioural Pharmacology. 14, 385-390 (2003).
  24. Strekalova, T., Steinbusch, H. . Mood and Anxiety related phenotypes in mice: Characterization using behavioral tests. 42, 153-176 (2009).
  25. Bartolomucci, A., Fuchs, E., Koolhaas, J. M., Ohl, F. . Mood and Anxiety related phenotypes in mice: Characterization using behavioral tests. 42, 261-275 (2009).
  26. Samuels, B. A., Hen, R. . Mood and Anxiety related phenotypes in mice: Characterization using behavioral tests. 63, 107-121 (2011).
  27. Juszczak, G. R. The usage of video analysis system for detection of immobility in the tail suspension test in mice. Pharmacology Biochemistry and Behavior. 85, 332-338 (2006).
  28. Crowley, J. J., Jones, O. ‘. L. e. a. r. y., F, O., Lucki, I. Automated tests for measuring the effects of antidepressants in mice. Pharmacology Biochemistry and Behavior. 78, 269-274 (2004).
  29. Gould, T. D. Involvement of AMPA receptors in the antidepressant-like effects of lithium in the mouse tail suspension test and forced swim test. Neuropharmacology. 54, 577-587 (2008).
  30. Gould, T. D., Dao, D. T., Kovacsics, C. E., Gould, T. D. . Mood and Anxiety related phenotypes in mice: Characterization using behavioral tests. 42, (2009).
check_url/3769?article_type=t

Play Video

Cite This Article
Can, A., Dao, D. T., Terrillion, C. E., Piantadosi, S. C., Bhat, S., Gould, T. D. The Tail Suspension Test. J. Vis. Exp. (59), e3769, doi:10.3791/3769 (2012).

View Video