Summary

脓毒症动物模型,用于评估新型草药疗法

Published: April 11, 2012
doi:

Summary

败血症是指从微生物感染导致的全身炎症反应综合征,可以被称为盲肠结扎穿刺(CLP)外科技术模拟。在这里,我们描述了一个方法来使用CLP诱导的动物模型,筛选治疗药物的药材。

Abstract

败血症是指从微生物感染导致的全身炎症反应综合征。它已经在动物经常模拟一些技术,包括输注外源性细菌毒素(内毒素血症)或细菌(菌血症),以及盲肠结扎穿孔(CLP)1-3盲肠手术穿孔。电使细菌溢出和粪便污染腹腔,阑尾炎穿孔或憩室炎的临床模仿人类疾病。控制败血症的严重程度,最终死亡率反映,可以通过改变盲肠穿刺2针的大小手术。在动物实验中,中电诱发心血管疾病,代谢和免疫反应类似,双相血流动力学观察临床过程,在人类败血症3。因此,中电模型被认为是最有关的临床实验败血症模型1-3。/ P>

各种动物模型已被用来澄清复杂的实验性败血症的发病机制。败血症的致命后果,部分原因是由于早期细胞因子的过度积累(如肿瘤坏死因子,IL-1和IFN-γ)4-6和晚期炎症介质(例如,HMGB1的)7。早期炎性细胞因子相比,晚长效调解员有更宽的治疗窗的临床应用。例如,开始CLP 24小时内的HMGB1的中和抗体的延迟管理,仍然救出小鼠致死8,9,建立HMGB1的后期调解作为一个致命的败血症。后期长效调解员发现HMGB1的败血症治疗,使用中国传统中药的发展已开始了新的调查领域。在本文中,我们描述了一个CLP诱导的脓毒症的过程,其使用中草药筛选用于HM的GB1-靶向治疗。

Protocol

1。败血症动物模型的建立小鼠麻醉与氯胺酮(75毫克/千克,肌肉注射,IM)和甲苯噻嗪(10毫克/千克,IM),并放置在仰卧位。 鼠标的脚,用胶带固定,以确保一个稳定的位置。 3个交替的优碘或其他皮肤消毒和酒精擦洗干净腹部。然后,让一个15毫米的中线切口,显露盲肠。 盲肠尖约5.0毫米用4-0丝线结扎的盲肠,然后用22号针头穿刺盲肠结扎残端一次让粪便的挤压。…

Discussion

在实验室中,败血症的几种动物模型已受聘了解败血症的发病机理,以开发潜在的新疗法。成功翻译成败血症的临床应用前的动物实验研究及其临床意义仍然是一个辩论的题目。虽然对早期细胞因子的中和抗体(如肿瘤坏死因子)在菌血症/内毒素血症17,18动物模型的保护,他们实际上恶化19败血症动物模型的生存。同样,最抗TNF药物未能表现出败血症20-22临床试验的疗效。…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作是由国立卫生研究院,国家普通医学科学研究所(R01GM063075)和国家补充和替代医学中心(R01AT05076)赠款支持。

Materials

Name of the reagent Company Catalogue number
Betadine Purdue Products L.P. 25655-41-8
imipenem Merck & Co., Inc. 9882821
Ketamine HCl Hospira Inc. RL-0065
Xylazine Lloyd Laboratories 4821
Autoclip Becton Dickinson 427631
4-0 silk suture Roboz SUT-15-2
Surflo I.V. Catheter Terumo SR*OX2419CA
RayBio mouse cytokine antibody array RayBiotech, Inc. AAM-CYT-3
Thioglycollate Becton Dickinson 211716

References

  1. Wichterman, K. A., Baue, A. E., Chaudry, I. H. Sepsis and septic shock–a review of laboratory models and a proposal. J. Surg. Res. 29, 189-201 (1980).
  2. Baker, C. C., Chaudry, I. H., Gaines, H. O., Baue, A. E. Evaluation of factors affecting mortality rate after sepsis in a murine cecal ligation and puncture model. Surgery. 94, 331-335 (1983).
  3. Hubbard, W. J. Cecal ligation and puncture. Shock. 24, 52-57 (2005).
  4. Akira, S., Takeda, K. Toll-like receptor signalling. Nat. Rev. Immunol. 4, 499-511 (2004).
  5. Baggiolini, M., Loetscher, P. Chemokines in inflammation and immunity. Immunol. Today. 21, 418-420 (2000).
  6. Balkwill, F. Cytokines–soluble factors in immune responses. Curr. Opin. Immunol. 1, 241-249 (1988).
  7. Wang, H. HMG-1 as a late mediator of endotoxin lethality in mice. Science. 285, 248-251 (1999).
  8. Yang, H. Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proc. Natl. Acad. Sci. U.S.A. 101, 296-301 (2004).
  9. Qin, S. Role of HMGB1 in apoptosis-mediated sepsis lethality. J. Exp. Med. 203, 1637-1642 (2006).
  10. Ray, A., Dittel, B. N. Isolation of Mouse Peritoneal Cavity Cells. J. Vis. Exp. (35), e1488 (2010).
  11. Rendon-Mitchell, B. IFN-gamma Induces High Mobility Group Box 1 Protein Release Partly Through a TNF-Dependent Mechanism. J. Immunol. 170, 3890-3897 (2003).
  12. Li, W. A Major Ingredient of Green Tea Rescues Mice from Lethal Sepsis Partly by Inhibiting HMGB1. PLoS ONE. 2, e1153 (2007).
  13. Osuchowski, M. F., Welch, K., Siddiqui, J., Remick, D. G. Circulating cytokine/inhibitor profiles reshape the understanding of the SIRS/CARS continuum in sepsis and predict mortality. J. Immunol. 177, 1967-1974 (2006).
  14. Heuer, J. G. Evaluation of protein C and other biomarkers as predictors of mortality in a rat cecal ligation and puncture model of sepsis. Crit. Care. Med. 32, 1570-1578 (2004).
  15. Bozza, F. A. Cytokine profiles as markers of disease severity in sepsis: a multiplex analysis. Crit. Care. 11, R49 (2007).
  16. Li, W. EGCG stimulates autophagy and reduces cytoplasmic HMGB1 levels in endotoxin-stimulated macrophages. Biochem. Pharmacol. 81, 1152-1163 (2011).
  17. Beutler, B., Milsark, I. W., Cerami, A. C. Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science. 229, 869-871 (1985).
  18. Tracey, K. J. Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature. 330, 662-664 (1987).
  19. Eskandari, M. K. Anti-tumor necrosis factor antibody therapy fails to prevent lethality after cecal ligation and puncture or endotoxemia. J. Immunol. 148, 2724-2730 (1992).
  20. Ziegler, E. J. Treatment of gram-negative bacteremia and septic shock with HA-1A human monoclonal antibody against endotoxin. A randomized, double-blind, placebo-controlled trial. The HA-1A Sepsis Study Group. N. Engl. J. Med. 324, 429-436 (1991).
  21. Ziegler, E. J. Treatment of gram-negative bacteremia and shock with human antiserum to a mutant Escherichia coli. N. Engl. J. Med. 307, 1225-1230 (1982).
  22. Abraham, E. Efficacy and safety of monoclonal antibody to human tumor necrosis factor alpha in patients with sepsis syndrome. A randomized, controlled, double-blind, multicenter clinical trial. TNF-alpha MAb Sepsis Study Group. JAMA. 273, 934-941 (1995).
  23. Cohen, J. Adjunctive therapy in sepsis: a critical analysis of the clinical trial programme. Br. Med. Bull. 55, 212-225 (1999).
  24. Dellinger, R. P. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit. Care Med. 36, 296-327 (2008).
  25. Wang, H., Zhu, S., Zhou, R., Li, W., Sama, A. E. Therapeutic potential of HMGB1-targeting agents in sepsis. Expert. Rev. Mol. Med. 10, e32 (2008).
  26. Wang, H. The aqueous extract of a popular herbal nutrient supplement, Angelica sinensis, protects mice against lethal endotoxemia and sepsis. J. Nutr. 136, 360-365 (2006).
  27. Li, W. A cardiovascular drug rescues mice from lethal sepsis by selectively attenuating a late-acting proinflammatory mediator, high mobility group box 1. J. Immunol. 178, 3856-3864 (2007).
  28. Fukuyama, M. Mixed bacterial infection model of sepsis in rabbits and its application to evaluate superantigen-adsorbing device. Blood Purif. 23, 119-127 (2005).
check_url/3926?article_type=t

Play Video

Cite This Article
Li, W., Zhu, S., Zhang, Y., Li, J., Sama, A. E., Wang, P., Wang, H. Use of Animal Model of Sepsis to Evaluate Novel Herbal Therapies. J. Vis. Exp. (62), e3926, doi:10.3791/3926 (2012).

View Video