Summary

实时数字成像大鼠提睾肌缺血再灌注损伤(IRI)的白细胞 - 内皮细胞相互作用

Published: August 05, 2012
doi:

Summary

数字提睾微循环毛细血管静脉活体荧光显微镜是一种方便的方法获得白细胞 – 内皮细胞相互作用的见解<em>在体内</em在缺血再灌注损伤(IRI)的横纹肌组织。我们在这里提供一份详细的协议,安全地执行技术,并讨论了它的应用和限制。

Abstract

在病理条件下,如脑卒中,心肌梗死,肠缺血,以及移植和心血管手术。1以前缺血组织的再灌注后的大阵,而必要的预防不可逆转的缺血再灌注损伤(IRI)有牵连组织损伤,诱发过度炎症反应受影响的组织。毗邻的活性氧,活化补体系统的生产和增加血管通透性,激活白细胞再灌注过程中的病理级联在炎症组织损伤的原则演员之一。2,3白细胞激活是一个多步过程组成轧制,坚定的粘附和轮回之间复杂的相互作用的粘附分子介导的反应,如补体因子,趋化因子,血小板活化因子的趋化因子。

<虽然在毛细血管静脉的白细胞滚动主要选择素5的相互作用介导,与他们的柜台配体,坚定白细胞粘附血管内皮细胞是通过粘附分子(ICAM)与血管细胞结合的选择控制类p =“的jove_content”>粘附分子(VCAM),6,7

在体内的白细胞-内皮细胞相互作用观察的金标准是活体显微镜技术,首次在1968年8。

虽然各个器官缺血再灌注损伤(缺血再灌注损伤)的各种型号,9-12只有少数是适合微血管床的白细胞招聘的直接可视化的图像质量高的水平上。

在这里,我们促进提睾微循环的毛细血管后微静脉的活体荧光显微镜的数字作为一种方便的方法大鼠IRI的研究,定性和定量分析白细胞招聘横纹肌组织,并为实现该技术提供了一个详细的手册13。我们进一步说明常见的陷阱,应该使读者能够真正体会,安全地执行方法,并提供有用的提示。

在由步步协议,我们描述如何获得足够的监测,保持时间较长的动物坚决麻醉呼吸控制麻醉下开始。然后,我们描述优秀的光学分辨率为薄平板提睾准备和提供已在我们的实验室建立在IRI白细胞成像的协议。

Protocol

1。麻醉和监测适当的国家和机构伦理应该在之前进行动物实验。继批准从伦理委员会麻醉男性只SD大鼠的体重从120 – 180克。提供2 – 3%异氟醚,异氟醚蒸发器和一个有机玻璃箱,通过放置在大鼠内。 尽快达到适当的麻醉水平(缺乏反应脚趾或尾巴捏)大鼠加权和腹侧颈区剃光。 放在一个加热垫在背卧鼠体温保持在37°C和异氟醚适用于2卷用硅胶面具%。 <p class="jove_co…

Discussion

白细胞-内皮细胞相互作用,生产活性氧和激活补体系统是IRI的诱导组织功能障碍的主要特点。26受影响组织的微循环被视为不可分割的炎症发病网站。除了 ​​如流室检测27,28的 体外实验,它是强制性的,以提供行之有效的活体成像模型,以进一步评估在体内相关。虽然已在不同的器官系统有牵连IRI的,我们在这里描述的方法系统地研究白细胞与内皮细胞相互作用…

Disclosures

The authors have nothing to disclose.

Acknowledgements

授予的“德意志研究联合会”(EI 866/1-1)苏艾森哈特支持这项工作。

Materials

Name of the equipment: Company: Catalogue No.: Comments:
Forene 100% (V/V) Abbot B506 API isoflurane
Terylene Suture Serag Weissner OC108000
Portex Fine Bore Polythene Tubing Smiths Medical 800/100/100 0.28 mm inner Diameter
0,9% saline solution Fresinus Kabi 808771
Change-A-tip deluxe cautery kit Bovie Medical DEL1
Abbocath -T 14G Venisystems G713 – A01 used as lens tube
Servo Ventilator 900C Maquet used as animal ventialtor
Logical pressure transducer Smiths Medical MX1960
Sirecust 404 Monitor Siemens
ABL 700 Benchtop Analyzer Radiometer for blood gas measurement
Heating pad Effenberger 8319
Aluminum stage Alfun AW7022
Surgical microscope OPMI 6-SDFC Carl Zeiss
Microsurgical instruments lab set S&T 767
Biemer vessel clip Diener 64.562
Applying forceps Diener 64.568 for Biemer vessel clip
Rhodamine 6G Sigma-Aldrich R4127
Vaseline white DAB Winthrop 2726853
Cover glasses 32×32 mm
Intravital setup
Zeis Axio Scope A-1 MAT Carl Zeis 490036 epifluorescence microscope
470 nm LED Carl Zeis 423052 fluorescence light source
Colibri 2 System Carl Zeis 423052
W Plan-Apochromat 20x/1,0 DIC Carl Zeis 421452 water immersion objective
AxioCam MRm Rev. 3 FireWire Carl Zeis 426509 high resolution digital camera
Axio vision LE software Carl Zeis 410130 use for offline analysis

References

  1. Cetin, C. Protective effect of fucoidin (a neutrophil rolling inhibitor) on ischemia reperfusion injury: experimental study in rat epigastric island flaps. Ann. Plast. Surg. 47, 540-546 (2001).
  2. Granger, D. N. Role of xanthine oxidase and granulocytes in ischemia-reperfusion injury. Am. J. Physiol. 255, H1269-H1275 (1988).
  3. Lazarus, B. The role of mast cells in ischaemia-reperfusion injury in murine skeletal muscle. J Pathol. 191, 443-448 (2000).
  4. van den Heuvel, M. G. Review: Ischaemia-reperfusion injury in flap surgery. J. Plast. Reconstr. Aesthet. Surg. 62, 721-726 (2009).
  5. Rosen, S. D. Cell surface lectins in the immune system. Semin. Immunol. 5, 237-247 (1993).
  6. van der Flier, A., Sonnenberg, A. Function and interactions of integrins. Cell Tissue Res. 305, 285-298 (2001).
  7. Panes, J., Perry, M., Granger, D. N. Leukocyte-endothelial cell adhesion: avenues for therapeutic intervention. Br. J. Pharmacol. 126, 537-550 (1999).
  8. Gavins, F. N., Chatterjee, B. E. Intravital microscopy for the study of mouse microcirculation in anti-inflammatory drug research: focus on the mesentery and cremaster preparations. J. Pharmacol. Toxicol. Methods. 49, 1-14 (2004).
  9. Sutton, T. A. Injury of the renal microvascular endothelium alters barrier function after ischemia. Am. J. Physiol. Renal. Physiol. 285, 191-198 (2003).
  10. Serracino-Inglott, F. Differential nitric oxide synthase expression during hepatic ischemia-reperfusion. Am. J. Surg. 185, 589-595 (2003).
  11. Eppinger, M. J. Mediators of ischemia-reperfusion injury of rat lung. Am J Pathol. 150, 1773-1784 (1997).
  12. Dumont, E. A. Real-time imaging of apoptotic cell-membrane changes at the single-cell level in the beating murine heart. Nat Med. 7, 1352-1355 (2001).
  13. Baez, S. An open cremaster muscle preparation for the study of blood vessels by in vivo microscopy. Microvasc Res. 5, 384-394 (1973).
  14. Woeste, G. Octreotide attenuates impaired microcirculation in postischemic pancreatitis when administered before induction of ischemia. Transplantation. 86, 961-967 (2008).
  15. Schultz, J. E., Hsu, A. K., Gross, G. J. Morphine mimics the cardioprotective effect of ischemic preconditioning via a glibenclamide-sensitive mechanism in the rat heart. Circ. Res. 78, 1100-1104 (1996).
  16. Dobschuetz, E. v. o. n. Dynamic intravital fluorescence microscopy–a novel method for the assessment of microvascular permeability in acute pancreatitis. Microvasc Res. 67, 55-63 (2004).
  17. Vutskits, L. Adverse effects of methylene blue on the central nervous system. Anesthesiology. 108, 684-692 (2008).
  18. Takasu, A. Improved survival time with combined early blood transfusion and fluid administration in uncontrolled hemorrhagic shock in rats. J. Trauma. 8, 312-316 (2010).
  19. Proctor, K. G., Busija, D. W. Relationships among arteriolar, regional, and whole organ blood flow in cremaster muscle. Am. J. Physiol. 249, 34-41 (1985).
  20. Bagher, P., Segal, S. S. The Mouse Cremaster Muscle Preparation for Intravital Imaging of the Microcirculation. J. Vis. Exp. (52), e2874 (2011).
  21. Kanwar, S., Hickey, M. J., Kubes, P. Postischemic inflammation: a role for mast cells in intestine but not in skeletal muscle. Am. J. Physiol. 275, 212-218 (1998).
  22. Leoni, G. Inflamed phenotype of the mesenteric microcirculation of melanocortin type 3 receptor-null mice after ischemia-reperfusion. FASEB J. 22, 4228-4238 (2008).
  23. Simoncini, T. Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase. Nature. 407, 538-541 (2000).
  24. Woollard, K. J. Pathophysiological levels of soluble P-selectin mediate adhesion of leukocytes to the endothelium through Mac-1 activation. Circ. Res. 103, 1128-1138 (2008).
  25. Mori, N. Ischemia-reperfusion induced microvascular responses in LDL-receptor -/- mice. Am. J. Physiol. 276, H1647-H1654 (1999).
  26. Eisenhardt, S. U. Monitoring Molecular Changes Induced by Ischemia/Reperfusion in Human Free Muscle Flap Tissue Samples. Ann. Plast. Surg. , (2011).
  27. Eisenhardt, S. U. Generation of activation-specific human anti-{alpha}M{beta}2 single-chain antibodies as potential diagnostic tools and therapeutic agents. Blood. 109, 3521-3528 (2007).
  28. Eisenhardt, S. U. Dissociation of pentameric to monomeric C-reactive protein on activated platelets localizes inflammation to atherosclerotic plaques. Circ Res. 105, 128-137 (2009).
  29. Eisenhardt, S. U. C-reactive protein: how conformational changes influence inflammatory properties. Cell Cycle. 8, 3885-3892 (2009).
  30. Granger, D. N. . Physiology and pathophysiology of leukocyte adhesion. , 520 (1995).
  31. Baatz, H. Kinetics of white blood cell staining by intravascular administration of rhodamine 6G. Int. J. Microcirc. Clin. Exp. 15, 85-91 (1995).
  32. Mempel, T. R. In vivo imaging of leukocyte trafficking in blood vessels and tissues. Curr. Opin. Immunol. 16, 406-417 (2004).
  33. Abbitt, K. B., Rainger, G. E., Nash, G. B. Effects of fluorescent dyes on selectin and integrin-mediated stages of adhesion and migration of flowing leukocytes. J. Immunol. Methods. 239, 109-119 (2000).
check_url/3973?article_type=t

Play Video

Cite This Article
Thiele, J. R., Goerendt, K., Stark, G. B., Eisenhardt, S. U. Real-time Digital Imaging of Leukocyte-endothelial Interaction in Ischemia-reperfusion Injury (IRI) of the Rat Cremaster Muscle. J. Vis. Exp. (66), e3973, doi:10.3791/3973 (2012).

View Video