Summary

映射后的Theta突发刺激对人类听觉皮层功能成像

Published: September 12, 2012
doi:

Summary

听觉处理是基础的语音和音乐相关的处理。经颅磁刺激(TMS)已经被成功地用于研究的认知,感觉和运动系统,但很少有人去试镜。在这里,我们调查了解听觉皮层的功能组织与功能性磁共振成像TMS相结合。

Abstract

听觉皮质涉及到的声音的处理,这是在语音或音乐相关的处理1的基础。然而,尽管有相当的最新进展,人类听觉皮层的功能特性和单侧远没有得到充分的理解。经颅磁刺激(TMS)是一种非侵入性技术,可以短暂或持久地调节大脑皮质的兴奋性,通过局部磁场脉冲的应用,并探索可塑性和连接是一个独特的方法。最近才开始被应用到理解听觉皮质功能2。

使用TMS的一个重要问题是,刺激的生理后果是难以确定的。虽然许多TMS研究使线圈的目标的区域是受影响的区域的隐含的假设,这不需要的情况下,特别是对于复杂的认知功能WHI的CH取决于许多大脑区域之间的交互3。这个问题的一个解决办法是用功能性磁共振成像(fMRI)技术,结合TMS。这里的想法是,功能磁共振成像的大脑活动的变化与TMS将提供一个指数。因此,功能磁共振成像将提供一个独立的手段,评估哪些地区受到影响的TMS和它们是如何调制4。此外,fMRI的允许功能连接的评估,这代表一个遥远的地区的时间之间的耦合措施。因此,它可以是有用的,不仅要测量的净活性调制引起的TMS在给定的位置,而且在何种程度上受TMS的网络性能,通过任何观察到的变化,在功能连接。

有不同的方法结合TMS和功能成像的时间顺序的方法。官能MRI可被施加之前,期间,之后,或者之前和之后都TMS。最近一些交错TMS和功能磁共振成像研究,以提供在线地图功能的变化引起的TMS 5-7。然而,这在线组合有许多的技术问题,包括静态的TMS线圈在扫描器室,或MR图像形成的过程中的TMS脉冲的影响的存在下,从所得的工件。但更重要的是,由TMS(与标准的使用,因为扫描器的谐振孔相比增加)和增加的TMS的线圈振动(由于MR扫描器的静磁场的强的机械力引起的诱导)的响亮的声噪声研究听觉处理时,构成一个关键的问题。

这是原因之一fMRI的满分,TMS为内标,本研究之前和之后进行。类似的方法已被用于针对运动皮层8,9,运动前皮层10,初级躯体感觉皮层11,12和语言相关领域的13,但到目前为止,还没有结合TMS-fMRI研究调查了听觉皮层。这篇文章的目的是提供有关的协议和注意事项要成功地结合这两种神经科学的工具来研究听觉处理的细节。

以前我们发现,在高,低频率(或10 Hz和1赫兹),在听觉皮层调制响应时间(RT)在旋律中的歧视任务2的重复TMS(经颅磁刺激)。我们还发现,RT调制在听觉功能连接网络评估与使用功能磁共振成像的功能左侧和右侧听觉皮层之间的连接执行任务的过程中,较高的易化作用( 降低RT)观察经颅磁刺激。然而,这些研究结果主要是相关性,功能性核磁共振造影前进行经颅磁刺激。在这里,功能磁共振成像进行前,后,立即TMS提供直接的措施听觉皮层的功能组织,并且更具体的塑料重组后发生的神经干预设置由TMS的听觉神经网络。

结合应用在听觉皮层的功能磁共振成像和TMS应该能够更好地理解大脑的听觉处理机制,提供生理功能的影响TMS信息。这方面的知识对于许多认知神经科学应用可能是有用的,以及用于优化的TMS的治疗中的应用,特别是在听觉相关的疾病。

Protocol

该协议为期两天的会议分为(不一定是连续的)。第一天由组成的解剖和功能磁共振扫描,以确定每个参与者的领域有针对性的TMS的功能磁共振成像定位。第二天由功能磁共振成像会议前和后TMS,TMS是应用在扫描仪内使用一个特殊的MR兼容TMS线圈(Magstim有限公司,威尔士,英国)和无框架立体定向系统(Brainsight)。后者用于在皮质区相对于每个参与者的解剖和功能的数据实时TMS线圈的位置。 <…

Discussion

我们描述了一个协议,结合当前离线TMS和功能磁共振成像调查的听觉皮层的功能组织。在接下来的章节中,我们将讨论的方法时,需要考虑的因素进行这样的方法。

收购及时间后TMS功能磁共振成像会话

顺序扫描采集和平衡的前和后TMS功能磁共振成像会议

关键的是要获得一个MR解剖扫描之前和之后,以TMS为内标,以得到一个鲁棒?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

CIBC奖学金(JA)和NSERC补助金(RZ)。我们是感谢罗奇M.科莫(Brainsight)的红外摄像机对他的帮助,MR兼容的跟踪器和其他硬件支持。我们也感谢布赖恩,海因斯(Hybex创新公司)是谁设计的多节臂的线圈支架和提供的数字显示在视频。特别感谢所有的的MR技术人员和M.费雷拉从麦康奈尔脑成像中心的蒙特利尔神经学研究所的帮助我们优化设计的实验。

Materials

Material Name Type Company
Transcranial magnetic stimulation Magstim super Rapid2 stimulator, Rapid-2 Plus One Module Magstim Ltd., Wales, UK
Coil for magnetic stimulation MRI-compatible 70 mm figure-of-eight-coil Magstim Ltd., Wales, UK
Magnetic resonance imaging 3-T Siemens Trio scanner, 32-channel Head Coil Siemens, Inc., Germany
Frameless Stereotaxy Brainsight Rogue Research Inc., Montreal, Canada
Optical measurement system Polaris Spectra Northern Digital Inc, Ontario, Canada
Multi-jointed arm for coil holder Standard Hybex Innovations Inc., Anjou, Canada
MRI-Compatible Insert Earphones Sensimetrics, Model S14 Sensimetrics Corporation, MA, USA

References

  1. Winer, J. A., Schreiner, C. E. . The Auditory Cortex. , (2011).
  2. Andoh, J., Zatorre, R. J. Interhemispheric Connectivity Influences the Degree of Modulation of TMS-Induced Effects during Auditory Processing. Frontiers in psychology. 2, 161 (2011).
  3. Siebner, H. R., Hartwigsen, G., Kassuba, T., Rothwell, J. C. How does transcranial magnetic stimulation modify neuronal activity in the brain? Implications for studies of cognition. Cortex. 45, 1035-1042 (2009).
  4. Ruff, C. C., Driver, J., Bestmann, S. Combining TMS and fMRI: from ‘virtual lesions’ to functional-network accounts of cognition. Cortex; a journal devoted to the study of the nervous system and behavior. 45, 1043-1049 (2009).
  5. Bestmann, S. Mapping causal interregional influences with concurrent TMS-fMRI. Exp. Brain Res. 191, 383-402 (2008).
  6. Bohning, D. E. BOLD-fMRI response to single-pulse transcranial magnetic stimulation (TMS. Journal of magnetic resonance imaging : JMRI. 11, 569-574 (2000).
  7. de Vries, P. M. Changes in cerebral activations during movement execution and imagery after parietal cortex TMS interleaved with 3T MRI. Brain research. 1285, 58-68 (2009).
  8. Cardenas-Morales, L., Gron, G., Kammer, T. Exploring the after-effects of theta burst magnetic stimulation on the human motor cortex: a functional imaging study. Human brain mapping. 32, 1948-1960 (2011).
  9. Grefkes, C. Modulating cortical connectivity in stroke patients by rTMS assessed with fMRI and dynamic causal modeling. NeuroImage. 50, 233-242 (2010).
  10. O’shea, J., Johansen-Berg, H., Trief, D., Gobel, S., Rushworth, M. F. S. Functionally specific in human premotor reorganization cortex. Neuron. 54, 479-490 (2007).
  11. Pleger, B. Repetitive transcranial magnetic stimulation-induced changes in sensorimotor coupling parallel improvements of somatosensation in humans. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26, 1945-1952 (2006).
  12. Tegenthoff, M. Improvement of tactile discrimination performance and enlargement of cortical somatosensory maps after 5 Hz rTMS. Plos Biology. 3, 2031-2040 (2005).
  13. Andoh, J., Paus, T. Combining functional neuroimaging with off-line brain stimulation: modulation of task-related activity in language areas. Journal of cognitive neuroscience. 23, 349-361 (2011).
  14. Belin, P., Zatorre, R. J., Hoge, R., Evans, A. C., Pike, B. Event-related fMRI of the auditory cortex. Neuroimage. 10, 417-429 (1999).
  15. Hall, D. A. “Sparse” temporal sampling in auditory fMRI. Human Brain Mapping. 7, 213-223 (1999).
  16. Foster, N. E., Zatorre, R. J. A role for the intraparietal sulcus in transforming musical pitch information. Cereb Cortex. 20, 1350-1359 (2010).
  17. Bohning, D. E. Mapping transcranial magnetic stimulation (TMS) fields in vivo with MRI. Neuroreport. 8, 2535-2538 (1997).
  18. Corthout, E., Uttl, B., Walsh, V., Hallett, M., Cowey, A. Timing of activity in early visual cortex as revealed by transcranial magnetic stimulation. Neuroreport. 10, 2631-2634 (1999).
  19. Lewald, J., Foltys, H., Topper, R. Role of the posterior parietal cortex in spatial hearing. The Journal of neuroscience : the official journal of the Society for Neuroscience. 22, RC207 (2002).
  20. Huang, Y. Z., Edwards, M. J., Rounis, E., Bhatia, K. P., Rothwell, J. C. Theta burst stimulation of the human motor cortex. Neuron. 45, 201-206 (2005).
  21. Loubinoux, I. Within-session and between-session reproducibility of cerebral sensorimotor activation: a test–retest effect evidenced with functional magnetic resonance imaging. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 21, 592-607 (2001).
  22. Lisanby, S. H., Gutman, D., Luber, B., Schroeder, C., Sackeim, H. A. Sham TMS: intracerebral measurement of the induced electrical field and the induction of motor-evoked potentials. Biological psychiatry. 49, 460-463 (2001).
  23. Loo, C. K. Transcranial magnetic stimulation (TMS) in controlled treatment studies: are some “sham” forms active. Biological psychiatry. 47, 325-331 (2000).
  24. Robertson, E. M., Theoret, H., Pascual-Leone, A. Studies in cognition: the problems solved and created by transcranial magnetic stimulation. J. Cogn. Neurosci. 15, 948-960 (2003).
  25. Puschmann, S., Uppenkamp, S., Kollmeier, B., Thiel, C. M. Dichotic pitch activates pitch processing centre in Heschl’s gyrus. NeuroImage. 49, 1641-1649 (2010).
  26. Johnsrude, I. S., Penhune, V. B., Zatorre, R. J. Functional specificity in the right human auditory cortex for perceiving pitch direction. Brain : a journal of neurology. 123, 155-163 (2000).
  27. Di Lazzaro, V. The physiological basis of the effects of intermittent theta burst stimulation of the human motor cortex. The Journal of physiology. 586, 3871-3879 (2008).
  28. Stagg, C. J. Neurochemical effects of theta burst stimulation as assessed by magnetic resonance spectroscopy. Journal of neurophysiology. 101, 2872-2877 (2009).
  29. Todd, G., Flavel, S. C., Ridding, M. C. Priming theta-burst repetitive transcranial magnetic stimulation with low- and high-frequency stimulation. Experimental brain research. Experimentelle Hirnforschung. Experimentation cerebrale. 195, 307-315 (2009).
  30. Bestmann, S., Baudewig, J., Siebner, H. R., Rothwell, J. C., Frahm, J. Subthreshold high-frequency TMS of human primary motor cortex modulates interconnected frontal motor areas as detected by interleaved fMRI-TMS. Neuroimage. 20, 1685-1696 (2003).
  31. Bungert, A. TMS combined with fMRI. , (2010).
  32. Bestmann, S., Baudewig, J., Frahm, J. On the synchronization of transcranial magnetic stimulation and functional echo-planar imaging. Journal of magnetic resonance imaging : JMRI. 17, 309-316 (2003).
  33. Wassermann, E. M. Use and safety of a new repetitive transcranial magnetic stimulator. Electroencephalogr. Clin. Neurophysiol. 101, 412-417 (1996).
  34. Oberman, L. M., Pascual-Leone, A. Report of seizure induced by continuous theta burst stimulation. Brain stimulation. 2, 246-247 (2009).
  35. Rossi, S., Hallett, M., Rossini, P. M., Pascual-Leone, A. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin. Neurophysiol. 120, 2008-2039 (2009).
  36. Wassermann, E. M. Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5-7, 1996. Electroencephalography and clinical neurophysiology. , 1-16 (1998).
  37. Yamaguchi-Sekino, S., Sekino, M., Ueno, S. Biological effects of electromagnetic fields and recently updated safety guidelines for strong static magnetic fields. Magn. Reson. Med. Sci. 10, 1-10 (2011).
  38. Bestmann, S. Mapping causal interregional influences with concurrent TMS-fMRI. Experimental brain research. Experimentelle Hirnforschung. Experimentation cerebrale. 191, 383-402 (2008).
  39. Oberman, L., Edwards, D., Eldaief, M., Pascual-Leone, A. Safety of theta burst transcranial magnetic stimulation: a systematic review of the literature. Journal of clinical neurophysiology: official publication of the American Electroencephalographic Society. 28, 67-74 (2011).
  40. Kangarlu, A. Cognitive, cardiac, and physiological safety studies in ultra high field magnetic resonance imaging. Magn. Reson. Imaging. 17, 1407-1416 (1999).
  41. Schenck, J. F. Safety of strong, static magnetic fields. Journal of magnetic resonance imaging : JMRI. 12, 2-19 (2000).
  42. Lee, V. S. . Cardiovascular MRI: physical principles to practical protocols. , 175 (2006).
  43. Paus, T. Transcranial magnetic stimulation during positron emission tomography: a new method for studying connectivity of the human cerebral cortex. The Journal of neuroscience: the official journal of the Society for Neuroscience. 17, 3178-3184 (1997).
  44. Sack, A. T., Linden, D. E. Combining transcranial magnetic stimulation and functional imaging in cognitive brain research: possibilities and limitations. Brain Res. Brain Res. Rev. 43, 41-56 (2003).
  45. Ilmoniemi, R. J. Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity. Neuroreport. 8, 3537-3540 (1997).
  46. Thiel, A. From the left to the right: How the brain compensates progressive loss of language function. Brain Lang. 98, 57-65 (2006).
check_url/3985?article_type=t

Play Video

Cite This Article
Andoh, J., Zatorre, R. J. Mapping the After-effects of Theta Burst Stimulation on the Human Auditory Cortex with Functional Imaging. J. Vis. Exp. (67), e3985, doi:10.3791/3985 (2012).

View Video