Summary

急性片的成年小鼠前脑的神经细胞迁移的延时成像

Published: September 12, 2012
doi:

Summary

我们描述了一个协议,用于在小鼠前脑的神经细胞迁移的实时videoimaging。病毒标记的或接枝的神经元前体的迁移,在急性活片,使用具有较快的采集间隔的宽视场荧光成像研究细胞迁移的不同阶段,其中包括固定和迁移阶段的持续时间和速度的记录迁移。

Abstract

有相当多的证据表明新的功能性神经元组成产生的内源性神经干细胞库在禁区内的成年哺乳动物大脑。新生儿脑室下区(SVZ)的神经母细胞迁移沿喙迁徙的流(RMS)到其最终目的地,在嗅球(OB)1。在RMS中,神经母细胞迁移切向在链ensheathed的星形胶质细胞的过程2,3血管的结构支撑和源的分子因素需要迁移的4,5。在OB的枷锁,神经母细胞分离和放射状迁移到不同的延髓它们分化 ​​成的interneurons和集成到现有的网络中,6层。

在这个手稿中,我们描述监测细胞在急性迁移的啮齿类动物的脑组织切片的过程。急性片的使用允许assessm耳鼻喉科中的细胞迁移的微环境,密切在体内条件和难以进入体内成像的大脑区域,是相似的。此外,它避免了长期的培养条件,如在器官和细胞培养物的情况下,最终可能会改变的迁移特性的细胞。神经前体在急性片可以应用DIC光学或荧光蛋白。病毒标签在SVZ,接枝记者小鼠神经母细胞从野生型小鼠的SVZ,以及使用表达荧光蛋白的转基因小鼠,在成神经细胞的神经元前体是用于可视化的成神经细胞,并按照它们的迁移的所有合适的方法。然而,后一种方法,不允许进行跟踪各个细胞的很长一段时间,因为标记的细胞的高密度。我们使用了一个宽视场荧光直立显微镜配备有CCD照相机,达到了较快的采集时间间隔(1伊马GE每15或30秒),以可靠地识别静止和迁徙阶段。精确的识别的固定和迁徙阶段的持续时间是至关重要的明确的解释结果。我们还进行了多个z步收购成神经细胞迁移的3D监视。宽视场荧光成像技术已广泛用于可视化神经细胞迁移的7-10。在这里,我们将详细介绍标签的神经母细胞,进行实时视频成像在急性片的成年小鼠前脑的神经细胞迁移,分析细胞迁移的协议。虽然所描述的协议例举在成人RMS的成神经细胞的迁移,它也可以被用于跟踪在胚胎和产后早期大脑细胞迁移。

Protocol

1。标记神经元前体细胞神经母细胞可以可视化使用转基因小鼠,选择性地表达荧光蛋白在神经母细胞( 即 ,DCX-GFP,GAD67-GFP),立体定向注射的SVZ或RMS编码荧光蛋白的病毒颗粒,或通过嫁接记者小鼠的神经前体( 即 DCX-GFP,GAD67-GFP)的野生型小鼠的SVZ。我们描述的程序的嫁接和病毒标记的神经元前体。 记者小鼠的SVZ的神经母细胞的?…

Discussion

正确的定位到相应的大脑区域神经元前体是一个基本的程序,合适的组装和功能的神经回路的基本。绝大多数胚胎发育过程中细胞迁移,并在出生后的大脑只在少数地区,如OB,齿状回和小脑,神经元的位移仍然需要地方。在出生后的大脑编排细胞迁移的机制依然存在,然而,知之甚少。知识的机制和成熟的神经组织细胞迁移导向的分子途径,有助于了解在出生后大脑的神经元的定位和发展的新?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作是由加拿大卫生研究院(CIHR)授予ASJK部分由拉瓦尔大学的奖学金支持。 AS是一个加拿大研究主席在出生后的神经发生的收件人。

Materials

Name of the reagent Company Catalogue number
Sucrose Sigma S9378
Glucose (ACSF) EMD DX0145-3
NaCI Sigma S9625
KCI Sigma P9541
MgCI2x6H2O Sigma-Aldrich M2670
NaHCO3 Sigma S5761
NaH2PO4xH2O EMD SX0710-1
CaCI2x2H2O Sigma-Aldrich C3881
Dextran TexasRed Invitrogen D1864
Dextran CascadeBlue Invitrogen D1976
Glucose (40X solution) Sigma G8769
Sodium pyruvat Gibco 11360-070
HEPES Sigma H3375
HBSS Gibco 14170-112
DNase I Sigma D-5025
Trypsin-EDTA Gibco 25300-054
Neurobasal medium Gibco 21103-049
BSA EMD 2930
Pen/Strep Life Technologies 15140-122
Ketamine/Xylazine CDMV 5230
Pasteur pipette VWR 14672-380
15 ml conical tube Sarstedt 62.553.205
50 ml conical tube Sarstedt 62.547.205
Glass capillaries (stereotaxic injection) WPI 4878
Paraffin oil EMD PX0045-3
Proviodine Rougier 65655-1370
Suture Stoelting 50487
Anafen CDMV 11508
20 cc Syringe VWR SS-20L2
Petri dish VWR 25384-094
Agar Laboratoire Mat AP-0108
Glue Permabond 910
95% O2/5% CO2 Linde 24068835
Blade WPI 501901
Nylon mesh Warner Instruments 64-0198
Centrifuge Eppendorf 5702 000.019
Pipette puller Sutter Instrument P-97
Nanoliter injector WPI B203MC4
Stereotaxic injection apparatus WPI 502900
Micro drill system WPI 501819
Vibratome Thermo Scientific 920110
Wide-field fluorescent microscope Olympus BX61WIF
CCD camera Photometrics CS-HQ2-D
Ultra-quiet imaging chamber Harvard Apparatus 64-1487
PH-1 Series 20 heater platform Harvard Apparatus 64-0284
Heating system Warner Instruments TC-344B
40X water immersion objective Olympus 1-UM587
10X water immersion objective Olympus 1-UM583
Lambda DG-4 Sutter Instruments DG-4/OF
MetaMorph software Molecular Devices 40000
Imaris software Bitplane BPI-IM70-F1

References

  1. Kriegstein, A., Alvarez-Buylla, A. The glial nature of embryonic and adult neural stem cells. Annu. Rev. Neurosci. 32, 149-184 (2009).
  2. Kaneko, N. New neurons clear the path of astrocytic processes for their rapid migration in the adult brain. Neuron. 67, 213-223 (2010).
  3. Lois, C., Alvarez-Buylla, A. Long-distance neuronal migration in the adult mammalian brain. Science. 264, 1145-1148 (1994).
  4. Snapyan, M. Vasculature guides migrating neuronal precursors in the adult mammalian forebrain via brain-derived neurotrophic factor signaling. J. Neurosci. 29, 4172-4188 (2009).
  5. Whitman, M. C., Fan, W., Rela, L., Rodriguez-Gil, D. J., Greer, C. A. Blood vessels form a migratory scaffold in the rostral migratory stream. J. Comp. Neurol. 516, 94-104 (2009).
  6. Lledo, P. M., Saghatelyan, A. Integrating new neurons into the adult olfactory bulb: joining the network, life-death decisions, and the effects of sensory experience. Trends Neurosci. 28, 248-254 (2005).
  7. Bolteus, A. J., Bordey, A. GABA release and uptake regulate neuronal precursor migration in the postnatal subventricular zone. J. Neurosci. 24, 7623-7631 (2004).
  8. Martini, F. J., Valdeolmillos, M. Actomyosin contraction at the cell rear drives nuclear translocation in migrating cortical interneurons. J. Neurosci. 30, 8660-8670 (2010).
  9. Murase, S., Horwitz, A. F. Deleted in colorectal carcinoma and differentially expressed integrins mediate the directional migration of neural precursors in the rostral migratory stream. J. Neurosci. 22, 3568-3579 (2002).
  10. Wilcock, A. C., Swedlow, J. R., Storey, K. G. Mitotic spindle orientation distinguishes stem cell and terminal modes of neuron production in the early spinal cord. Development. 134, 1943-1954 (2007).
  11. Ono, M., Yanagawa, Y., Koyano, K. GABAergic neurons in inferior colliculus of the GAD67-GFP knock-in mouse: electrophysiological and morphological properties. Neurosci. Res. 51, 475-492 (2005).
  12. Bozoyan, L., Khlghatyan, J., Saghatelyan, A. Astrocytes Control the Development of the Migration-Promoting Vasculature Scaffold in the Postnatal Brain via VEGF Signaling. J. Neurosci. 32, 1687-1704 (2012).
  13. Bovetti, S. Blood vessels form a scaffold for neuroblast migration in the adult olfactory bulb. J. Neurosci. 27, 5976-5980 (2007).
  14. Platel, J. C., Heintz, T., Young, S., Gordon, V., Bordey, A. Tonic activation of GLUK5 kainate receptors decreases neuroblast migration in whole-mounts of the subventricular zone. J. Physiol. 586, 3783-3793 (2008).
  15. Nam, S. C. Dynamic features of postnatal subventricular zone cell motility: a two-photon time-lapse study. J. Comp. Neurol. 505, 190-208 (2007).
  16. Kim, Y., Comte, I., Szabo, G., Hockberger, P., Szele, F. G. Adult mouse subventricular zone stem and progenitor cells are sessile and epidermal growth factor receptor negatively regulates neuroblast migration. PLoS One. 4, e8122 (2009).
  17. Bortone, D., Polleux, F. KCC2 expression promotes the termination of cortical interneuron migration in a voltage-sensitive calcium-dependent manner. Neuron. 62, 53-71 (2009).
  18. Comte, I. Galectin-3 maintains cell motility from the subventricular zone to the olfactory bulb. J. Cell Sci. 124, 2438-2447 (2011).
check_url/4061?article_type=t

Play Video

Cite This Article
Khlghatyan, J., Saghatelyan, A. Time-lapse Imaging of Neuroblast Migration in Acute Slices of the Adult Mouse Forebrain. J. Vis. Exp. (67), e4061, doi:10.3791/4061 (2012).

View Video