Summary

复透皮电化学传感的空心微针为基础的传感器

Published: June 01, 2012
doi:

Summary

本文详细介绍了建设一个复用微针为基础的传感器。该设备正在研制多种分析快速和选择性地在现场采样和电化学分析。我们设想,临床医学和生物医学研究,这些微针为基础的传感器使用。

Abstract

一种微创复为有关生物分子进行快速分析监测系统的发展,可以提供个人患有慢性疾病的简便评估其直接的生理状态。此外,它可以作为一个复杂的,多因素的医疗条件的分析研究工具。为了实现这样一个多分析传感器,它必须是微创,组织间液的采样必须出现无疼痛或伤害用户,并分析必须迅速以及选择性。

最初发达,无痛苦的给药微针已被用于提供疫苗和药物制剂(如胰岛素)通过皮肤1-2由于这些设备访问的间隙,用微电极集成的微针可以作为透皮电化学传感器。选择性检测葡萄糖,谷氨酸,乳酸,Hydrogen过氧化氢 ​​和抗坏血酸已被证明使用碳纤维,修饰碳糊,铂金涂层的聚合物微针作为换能元件的集成微针电极的装置。3-7,8

这个微针的传感器技术,使一个新的和先进的分析方法,在原位,同时检测多种分析物。复用提供了复杂的微环境监测,否则很难在一个快速,微创的方式来描述的可能性。例如,这项技术可以被利用外同步监测,血糖,乳酸和pH值,9是重要的代谢疾病状态7,10-14指标(如癌症扩散)和运动诱发性酸中毒15。

Protocol

1。微针的制备使用三维造型软件SolidWorks(Dassault Systemes的SA,韦利济,法国),设计一个金字塔形的空心微针阵列( 图1)。3-5 为支持使用魔法的RP 13软件(Materialise的内华达州,比利时鲁汶)微针阵列结构设计。支撑结构,使树脂从设备在制造过程中流失,并提供了一​​个建立基地的微针。一个例子支持结构如图1所示。 链接的支持和微?…

Discussion

基于这种微针传感器的设计的多个方面被认为是前设备制造。为了使用这种传感器,实时检测传感器的响应时间必须是低的,在这个协议中,每个测试传感器具有响应时间低于十五秒。其选择性体内环境,其中包含可以干扰与电极反应的电化学生物分子内也选择在本协议中使用的浆料。除了粘贴组成,经营潜力的选择,以尽量减少干扰电活性的影响。微针阵列的制造成功,需要选择一个合?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

桑迪亚是multiprogram的实验室桑迪亚公司是洛克希德 – 马丁公司,美国能源部下属的国家核安全管理局根据合同DE-AC04-94AL85000经营。作者们承认,资金由美国桑迪亚国家实验室的实验室指导研究和开发(LDRD)计划。

Materials

Name of the reagent Company Catalogue number
Flat flexible cable Molex 3302/10SF
0.003″ Side sided tape Melinex  
0.004″ Double sided tape Melinex  
Lactate oxidase Sigma L0638
Glucose oxidase Sigma G7141
Rhodium on carbon Sigma 206164
Graphite powder Sigma 385031000
poly(ethylenimine) Acros 178570010
Mineral oil Sigma M5904
Glucose Sigma G8270
Lactate Sigma L1750
Fast Blue RR salt Sigma F0500
e-Shell 300 EnvisionTEC  
e-Shell 200 EnvisionTEC  
Ag/AgCl reference electrode Basi MF-2052
Pt wire Basi  
PGSTAT12 AutolabPotentiostat EcoChemie  
Perfactory RP EnvisionTEC  
Ottoflash Postcuring system EnvisionTEC  
Phosphoric acid Fisher A366-4
60W Model 6.75 CO2 raster/vector laser system Universal Laser Systems PLS6.75
CorelDraw Corel  
Solidworks Dassault Systemes 2009
Magics RP13 Materialise  

References

  1. Henry, S., McAllister, D. V., Allen, M. G., Prausnitz, M. R. Microfabricated microneedles: a novel approach to transdermal drug delivery. J. Pharm. Sci. 87, 922-925 (1998).
  2. Prausnitz, M. R. Microneedles for transdermal drug delivery. Adv. Drug Deliv. Rev. 56, 581-587 (2004).
  3. Miller, P. R., Gittard, S. D., Edwards, T. L., Lopez, D. M., Xiao, X., Wheeler, D. R., Monteiro-Riviere, N. A., Brozik, S. M., Polsky, R., Narayan, R. J. Integrated carbon fiber electrodes within hollow polymer microneedles for transdermal electrochemical sensing. Biomicrofluidics. 5, 013415-013415 (2011).
  4. Windmiller, J. R., Zhou, N., Chuang, M. C., Valdés-Ramírez, G., Santhosh, P., Miller, P. R., Narayan, R., Wang, J. Microneedle array-based carbon paste amperometric sensors and biosensors. Analyst. 136, 1846-1851 (2011).
  5. Windmiller, J. R., Valdés-Ramírez, G., Zhou, N., Zhou, M., Miller, P. R., Jin, C., Brozik, S. M., Polsky, R., Katz, E., Narayan, R., Wang, J. Bicomponent microneedle array biosensor for minimally-invasive glutamate monitoring. Electroanal. 23, 2302-2309 (2011).
  6. Ricci, F., Moscone, D., Palleschi, G. Ex vivo continuous glucose monitoringwith microdalysis technique: The example of GlucoDay. IEEE Sensors J. 8, 63-70 (2008).
  7. Zimmermann, S., Fienbork, D., Flounders, A. W., Liepmann, D. In-device enzyme immobilization: Wafer-level fabrication of an integrated glucose. Sens. Actuat. B. 99, 163-173 (2004).
  8. Miller, P. R., Skoog, S. A., Edwards, T. L., Lopez, D. M., Wheeler, D. R., Arango, D. C., Xiao, X., Brozik, S. M., Wang, J., Polsky, R., Narayan, R. J. Multiplexed microneedle-based biosensor array for characterization of metabolic acidosis. Biomicrofluidics. 88, 739-742 (2012).
  9. Miller, P. R., Skoog, S. A., Edwards, T. L., Lopez, D. M., Wheeler, D. R., Arango, D. C., Xiao, X., Brozik, S. M., Wang, J., Polsky, R., Narayan, R. J. Multiplexed microneedle-based biosensor array for characterization of metabolic acidosis. Talanta. 88, 739-742 (2012).
  10. Rofstad, E. K. Microenvironment-induced cancer metastasis. Int. J. Radiat. Biol. 76, 589-605 (2000).
  11. Vander Heiden, M. G., Cantley, L. C., Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 324, 1029-1033 (2009).
  12. Warburg, O., Wind, F., Negelein, E. The metabolism of tumors in the body. J. Gen. Physiol. 8, 519-530 (1927).
  13. Goode, J. A., Chadwick, D. J. The Tumour Microenvironment: Causes and Consequences of Hypoxia and Acidity. Novartis Foundation Symposium 240. , (2008).
  14. Cardone, R. A., Casavola, V., Reshkin, S. J. The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis. Nature Rev. Cancer. 5, 786-795 (2005).
  15. Robergs, R. A., Ghiasvand, F., Parker, D. Biochemistry of exercise-induced metabolic acidosis. Am. J. Phys. 287, R502-R516 (2004).
  16. Wang, J., Liu, J., Chen, L., Lu, F. Highly selective membrane-free, mediator-free glucose biosensor. Anal. Chem. 66, 3600-3603 (1994).
  17. Makos, M. A., Omiatek, D. M., Ewing, A. G., Heien, M. L. Development and characterization of a voltammetric carbon-fiber microelectrode pH sensor. Langmuir. 26, 10386-10391 (2010).
  18. Wang, J., Chen, Q., Pedrero, M. Highly selective biosensing of lactate at lactate oxidase containing rhodium-dispersed carbon paste electrodes. Anal. Chem. Acta. 304, 41-46 (1995).
check_url/4067?article_type=t

Play Video

Cite This Article
Miller, P. R., Skoog, S. A., Edwards, T. L., Wheeler, D. R., Xiao, X., Brozik, S. M., Polsky, R., Narayan, R. J. Hollow Microneedle-based Sensor for Multiplexed Transdermal Electrochemical Sensing. J. Vis. Exp. (64), e4067, doi:10.3791/4067 (2012).

View Video