Summary

बैक्टीरियल विष प्रेरित लाइव सेल प्रतिदीप्ति माइक्रोस्कोपी का उपयोग प्रतिक्रियाएँ की विज़ुअलाइज़ेशन

Published: October 01, 2012
doi:

Summary

रीकॉम्बीनैंट से कोलेस्ट्रॉल बाध्यकारी विष streptolysin हे सफ़ाई के लिए तरीके<em> ई. कोलाई</em> और यूकेरियोटिक कोशिकाओं जीने बंधन विष के दृश्य का वर्णन कर रहे हैं. विष के स्थानीयकृत वितरण को लक्षित कोशिकाओं में तेजी से और जटिल परिवर्तन के विष जीव विज्ञान के उपन्यास पहलुओं का खुलासा करने को प्रेरित करता है.

Abstract

Bacterial toxins bind to cholesterol in membranes, forming pores that allow for leakage of cellular contents and influx of materials from the external environment. The cell can either recover from this insult, which requires active membrane repair processes, or else die depending on the amount of toxin exposure and cell type1. In addition, these toxins induce strong inflammatory responses in infected hosts through activation of immune cells, including macrophages, which produce an array of pro-inflammatory cytokines2. Many Gram positive bacteria produce cholesterol binding toxins which have been shown to contribute to their virulence through largely uncharacterized mechanisms.

Morphologic changes in the plasma membrane of cells exposed to these toxins include their sequestration into cholesterol-enriched surface protrusions, which can be shed into the extracellular space, suggesting an intrinsic cellular defense mechanism3,4. This process occurs on all cells in the absence of metabolic activity, and can be visualized using EM after chemical fixation4. In immune cells such as macrophages that mediate inflammation in response to toxin exposure, induced membrane vesicles are suggested to contain cytokines of the IL-1 family and may be responsible both for shedding toxin and disseminating these pro-inflammatory cytokines5,6,7. A link between IL-1β release and a specific type of cell death, termed pyroptosis has been suggested, as both are caspase-1 dependent processes8. To sort out the complexities of this macrophage response, which includes toxin binding, shedding of membrane vesicles, cytokine release, and potentially cell death, we have developed labeling techniques and fluorescence microscopy methods that allow for real time visualization of toxin-cell interactions, including measurements of dysfunction and death (Figure 1). Use of live cell imaging is necessary due to limitations in other techniques. Biochemical approaches cannot resolve effects occurring in individual cells, while flow cytometry does not offer high resolution, real-time visualization of individual cells. The methods described here can be applied to kinetic analysis of responses induced by other stimuli involving complex phenotypic changes in cells.

Protocol

1. Streptolysin हे के शुद्धीकरण (SLO) BL21 सोने की 0.5 एल लेग शोरबा में प्लाज्मिड pBADgIII – SLOhis 9 युक्त कोशिकाओं के 20 मिलीलीटर रातोंरात संस्कृति टीका लगाना और 500 μl 50 मिलीग्राम / एमएल एम्पीसिलीन जोड़ें. 225 rpm पर 37 डिग्री सेल्स…

Representative Results

10 आमतौर पर 7 -10 8 यू / मिलीलीटर SLO 4 मिलीग्राम / एमएल के एक प्रोटीन एकाग्रता के साथ प्राप्त किया जा सकता है. विष की सेल के लिए आवश्यक राशि कोशिका प्रकार से भिन्न होता है, लेकिन आम तौर पर है यू 125-500 मिलीग्रा?…

Discussion

तकनीक यहाँ वर्णित जीवाणु विषाक्त पदार्थों को प्रतिरक्षा कोशिकाओं की प्रतिक्रियाओं की परीक्षा के लिए अनुमति देते हैं. सबसे महत्वपूर्ण कदम से निपटने और विष के dosing है. विष गतिविधि अत्यंत चर उसी तैयारी के…

Disclosures

The authors have nothing to disclose.

Acknowledgements

लेखकों के लिए उदार उपहार के लिए तकनीकी सहायता के लिए SLO प्लाज्मिड और Jonathon फ्रैंक्स के anthrolysin हे, माइकल Caparon के उदार उपहार के लिए रिचर्ड रेस्ट धन्यवाद देना चाहूंगा. यह काम NIH अनुदान T32CA82084 (पाक), और R01AI072083 (RDS) द्वारा वित्त पोषित किया गया था.

Materials

Name of the reagent Company Catalogue number Comments (optional)
Ni-NTA agarose Qiagen 30210
polymixin-agarose Sigma P1411-5ML
Zeba Desalt Spin col Fisher PI-89891
sheep RBCs Fisher 50-415-688
pBADgIII-SLO N/A N/A see ref9
Cy5 monoreactive dye GE Healthcare PA25001
Fura2-AM Life Technologies F1221
Calcein AM/ Ethidium homodimer Life Technologies L3224
Anti-CD11c-APC BD Biosciences 550261
collagen-coated glass-bottom dish Mattek P35GCol-1.5-10-C
femto-tip II Fisher E5242957000
Microloader Fisher E5242956003
dextran Alexa 555 Life Technologies D34679
Injectman NI 2 Eppendorf 920000029
FemtoJet Eppendorf 5247 000.013

Table 1. List and source of specific reagents and equipment needed. Specific equipment and reagents used in this protocol, along with company and catalogue number are listed.

Buffer Composition Step Used
Lyse/Wash 50 mM NaH2PO4
300 mM NaCl
10 mM imidazole, pH 8.0
1.4
Tris/salt 50 mM Tris, pH 8.0
300 mM NaCl
1.7
Elution buffer 50 mM Tris, pH 8.0
300 mM NaCl
250 mM imidazole
1.8
RBC Assay buffer 0.3% BSA
2 mM CaCl2
10 mM HEPES, pH 7.4
2.1
buffer R/B RPMI cell culture medium
2 mM CaCl2
0.5% BSA
3.1

Table 2. List of buffers used in this protocol. The buffers used, their composition and the first step at which they are used in the protocol are listed.

References

  1. Walev, I. Delivery of proteins into living cells by reversible membrane permeabilization with streptolysin-O. Proc. Natl. Acad. Sci. U.S.A. 98, 3185-3190 (2001).
  2. Walev, I. Potassium regulates IL-1 beta processing via calcium-independent phospholipase A2. J. Immunol. 164, 5120-5124 (2000).
  3. Scolding, N. J. Vesicular removal by oligodendrocytes of membrane attack complexes formed by activated complement. Nature. 339, 620-622 (1989).
  4. Keyel, P. A. Streptolysin O clearance through sequestration into blebs that bud passively from the plasma membrane. J. Cell. Sci. 124, 2414-2423 (2011).
  5. MacKenzie, A. Rapid secretion of interleukin-1beta by microvesicle shedding. Immunity. 15, 825-835 (2001).
  6. Qu, Y., Franchi, L., Nunez, G., Dubyak, G. R. Nonclassical IL-1 beta secretion stimulated by P2X7 receptors is dependent on inflammasome activation and correlated with exosome release in murine macrophages. J. Immunol. 179, 1913-1925 (2007).
  7. Andrei, C. Phospholipases C and A2 control lysosome-mediated IL-1 beta secretion: Implications for inflammatory processes. Proc. Natl. Acad. Sci. U.S.A. 101, 9745-9750 (2004).
  8. Franchi, L., Eigenbrod, T., Munoz-Planillo, R., Nunez, G. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat. Immunol. 10, 241-247 (2009).
  9. Magassa, N., Chandrasekaran, S., Caparon, M. G. Streptococcus pyogenes cytolysin-mediated translocation does not require pore formation by streptolysin O. EMBO Rep. 11, 400-405 (2010).
  10. Pinkney, M., Beachey, E., Kehoe, M. The thiol-activated toxin streptolysin O does not require a thiol group for cytolytic activity. Infect. Immun. 57, 2553-2558 (1989).
  11. Watkins, S. C., Salter, R. D. Functional connectivity between immune cells mediated by tunneling nanotubules. Immunity. 23, 309-318 (2005).
  12. McNeil, P. L., Vogel, S. S., Miyake, K., Terasaki, M. Patching plasma membrane disruptions with cytoplasmic membrane. J. Cell. Sci. 113, 1891-1902 (2000).
  13. Shannon, J. G., Ross, C. L., Koehler, T. M., Rest, R. F. Characterization of anthrolysin O, the Bacillus anthracis cholesterol-dependent cytolysin. Infect. Immun. 71, 3183-3189 (2003).
check_url/4227?article_type=t

Play Video

Cite This Article
Keyel, P. A., Heid, M. E., Watkins, S. C., Salter, R. D. Visualization of Bacterial Toxin Induced Responses Using Live Cell Fluorescence Microscopy. J. Vis. Exp. (68), e4227, doi:10.3791/4227 (2012).

View Video