Summary

欲求联想嗅觉学习<em>果蝇</em>幼虫

Published: February 18, 2013
doi:

Summary

果蝇幼虫能联想到刺激气味,味觉奖励。在这里,我们描述了一个简单的行为范式,使食欲关联嗅觉学习分析。

Abstract

在下面,我们将介绍的食欲联想在果蝇嗅觉学习方法的细节。的设置,与遗传干扰的组合,提供了一个手柄来分析在一个简单的幼虫脑特异性关联学习的神经细胞和分子的基本面。

生物可以用过去的经验来调整现在的行为。这种行为的潜在的收购可以定义为学习,这些记忆痕迹的潜力,1-4的物理基础。神经科学家试图了解这些过程是如何组织的分子和神经元在大脑中的变化,通过使用各种方法模式生物,从昆虫到脊椎动物5,6。对于这样的努力是有帮助的使用是简单和实验模型系统,。 果蝇幼虫已被证明是满足这些需求的基础上提供强大的行为分析,存在的各种转基因技术的基本组织的神经系统,包括约10000个神经元(虽然与一些让步:认知的限制,一些行为的选择,和丰富的经验可疑)7-10

果蝇幼虫可以形成协会气味和食欲的味觉增强,如糖​​11-14之间。在一个标准的检测,在实验室中成立B.格柏,动物收到两气味的倒数培训:第一组的幼虫接触到的气味,连同与味觉增强剂(白糖奖励),随后接触到的气味B没有加固9。同时接收倒数第二组的幼虫经历气味A的训练,而没有加固,随后暴露于气味乙加固(糖的奖励)。在下面的两个群体是工商业污水附加费特德自己的喜好两者之间的气味。相对较高的奖励气味的偏好反映联想学习 – 的性能指数(PI)。有关的各项性能指标的关联性的结论是令人信服的,因为除了从应急的气味和促味剂,其它参数,如气味和奖励曝光,通过时间和处理没有显着差异,两组9。

Protocol

1。准备 果蝇野生型幼虫被提出,在25°C和60%-80%的湿度在14/10光/暗周期。对于控制的确切年龄的幼虫始终成一小瓶(6厘米的高度和直径2.5 cm),其中包括约6毫升的标飞的食物,男10例,女20例。苍蝇产卵12小时,并在第二天被转移到一个新的小瓶。 5-6天后产蛋幼虫达到馈送第三龄期,如果在25℃引发,现在可以被用于行为实验。然而,一个具有确保只幼虫,仍然是在食品?…

Representative Results

图1A示出了概述幼虫嗅觉联想学习的实验程序。通过配对两个气味之一与糖奖励幼虫获得表达朝向比较风范气味的奖励的气味中的一个有吸引力的响应潜在的行为。两组的幼虫始终的培训,通过配对的气味OCT或AM的增强剂。性能指数(PI)测量的相关功能之间的相互培训的群体偏好的差异。 在相关功能进行了分析,在转基因幼虫,基本感觉运动能力的测试是必需?…

Discussion

果蝇幼虫所描述的设置允许关联嗅觉学习的同等小学大脑内的调查。方法很简单,价格便宜,易于在实验室建立的,并不需要高科技设备9。我们提出了一个版本的实验中,研究食欲联想学习,加强果糖奖励11。所描述的设置是根据一系列的参数化的全面的调查研究,训练试验的数目的变化的,单一的检测与质量测定,保留时间,使用的气味和气味的浓度和性别9,15…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们要特别感谢他们的实验装置和意见的手稿上的技术指导,的格柏实验室的成员。我们也感谢柳博芙·Pankevych飞的维修保养及野生型各州股票。这项工作是支持的DFG授予,的SNF授予31003A_132812 / 1和康斯坦茨大学的Zukunftskolleg(TH1584/1-1所有的AST)。

Materials

Name of the reagent Company Catalogue number CAS number
Fructose Sigma 47740 57-48-7
NaCl Fluka 71350 7647-14-5
Agarose Sigma A5093 9012-36-6
1-octanol Sigma 12012 111-87-5
Amylacetate Sigma 46022 628-63-7
Paraffin oil Sigma 18512 8012-95-1

References

  1. Pawlow, I. P. New Researches on Conditioned Reflexes. Science. 58, 359-361 (1923).
  2. Heisenberg, M. Mushroom body memoir: from maps to models. Nat. Rev. Neurosci. 4, 266-275 (2003).
  3. Kandel, E. R. Cellular insights into behavior and learning. Harvey Lect. 73, 19-92 (1979).
  4. Gerber, B., Tanimoto, H., Heisenberg, M. An engram found? Evaluating the evidence from fruit flies. Curr. Opin. Neurobiol. 14, 737-744 (2004).
  5. Milner, B., Squire, L. R., Kandel, E. R. Cognitive neuroscience and the study of memory. Neuron. 20, 445-468 (1998).
  6. Keene, A. C., Waddell, S. Drosophila olfactory memory: single genes to complex neural circuits. Nat. Rev. Neurosci. 8, (2007).
  7. Duffy, J. B. GAL4 system in Drosophila: a fly geneticist’s Swiss army knife. Genesis. 34, 1-15 (2002).
  8. Gerber, B., Stocker, R. F., Tanimura, T., Thum, A. S. Smelling, tasting, learning: Drosophila as a study case. Results Probl. Cell. Differ. 47, 139-185 (2009).
  9. Gerber, B., Stocker, R. F. The Drosophila larva as a model for studying chemosensation and chemosensory learning: a review. Chem. Senses. 32, 65-89 (2007).
  10. Venken, K. J., Simpson, J. H., Bellen, H. J. Genetic manipulation of genes and cells in the nervous system of the fruit fly. Neuron. 72, 202-230 (2011).
  11. Gerber, B., Hendel, T. Outcome expectations drive learned behaviour in larval Drosophila. Proc. Biol. Sci. 273, 2965-2968 (2006).
  12. Schleyer, M., et al. A behavior-based circuit model of how outcome expectations organize learned behavior in larval Drosophila. Learn Mem. 18, 639-653 (2011).
  13. Pauls, D., Selcho, M., Gendre, N., Stocker, R. F., Thum, A. S. Drosophila larvae establish appetitive olfactory memories via mushroom body neurons of embryonic origin. J. Neurosci. 30, 10655-10666 (2010).
  14. Selcho, M., Pauls, D., Han, K. A., Stocker, R. F., Thum, A. S. The role of dopamine in Drosophila larval classical olfactory conditioning. PLoS One. 4, e5897 (2009).
  15. Neuser, K., Husse, J., Stock, P., Gerber, B. Appetitive olfactory learning in Drosophila larvae:effects of repetition, reward strength, age, gender, assay type and memory span. Animal Behaviour. 69, 891-898 (2005).
  16. Scherer, S., Stocker, R. F., Gerber, B. Olfactory learning in individually assayed Drosophila larvae. Learn Mem. 10, 217-225 (2003).
  17. Aceves-Pina, E. O., Quinn, W. G. Learning in normal and mutant Drosophila larvae. Science. 206, 93-96 (1979).
  18. Heisenberg, M., Borst, A., Wagner, S., Byers, D. Drosophila mushroom body mutants are deficient in olfactory learning. J. Neurogenet. 2, 1-30 (1985).
  19. Khurana, S., Abu Baker, M. B., Siddiqi, O. Odour avoidance learning in the larva of Drosophila melanogaster. J. Biosci. 34, 621-631 (2009).
  20. Pauls, D., et al. Electric shock-induced associative olfactory learning in Drosophila larvae. Chem. Senses. 35, 335-346 (2010).
  21. Eschbach, C., et al. Associative learning between odorants and mechanosensory punishment in larval Drosophila. J. Exp. Biol. 214, 3897-3905 (2011).
  22. von Essen, A. M., Pauls, D., Thum, A. S., Sprecher, S. G. Capacity of visual classical conditioning in Drosophila larvae. Behav. Neurosci. 125, 921-929 (2011).
  23. Gerber, B., et al. Visual learning in individually assayed Drosophila larvae. J. Exp. Biol. 207, 179-188 (2004).
  24. Rohwedder, A., et al. Nutritional Value-Dependent and Nutritional Value-Independent Effects on Drosophila melanogaster Larval Behavior. Chem. Senses. , (2012).
  25. Lee, T., Lee, A., Luo, L. Development of the Drosophila mushroom bodies: sequential generation of three distinct types of neurons from a neuroblast. Development. 126, 4065-4076 (1999).
  26. Ito, K., et al. The organization of extrinsic neurons and their implications in the functional roles of the mushroom bodies in Drosophila melanogaster Meigen. Learn Mem. 5, 52-77 (1998).
  27. Wang, J., et al. Transmembrane/juxtamembrane domain-dependent Dscam distribution and function during mushroom body neuronal morphogenesis. Neuron. 43, 663-672 (2004).
  28. Robertson, K., Mergliano, J., Minden, J. S. Dissecting Drosophila embryonic brain development using photoactivated gene expression. Dev. Biol. 260, 124-137 (2003).
  29. Zhou, L., et al. Cooperative functions of the reaper and head involution defective genes in the programmed cell death of Drosophila central nervous system midline cells. Proc. Natl. Acad. Sci. U.S.A. 94, 5131-5136 (1997).
  30. Kitamoto, T. Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. J. Neurobiol. 47, 81-92 (2001).
  31. Schroll, C., et al. Light-induced activation of distinct modulatory neurons triggers appetitive or aversive learning in Drosophila larvae. Curr. Biol. 16, 1741-1747 (2006).
  32. Rosenzweig, M., et al. The Drosophila ortholog of vertebrate TRPA1 regulates thermotaxis. Genes Dev. 19, 419-424 (2005).
  33. Baines, R. A., Uhler, J. P., Thompson, A., Sweeney, S. T., Bate, M. Altered electrical properties in Drosophila neurons developing without synaptic transmission. J. Neurosci. 21, 1523-1531 (2001).
  34. Chen, Y. C., Mishra, D., Schmitt, L., Schmuker, M., Gerber, B. A behavioral odor similarity “space” in larval Drosophila. Chem. Senses. 36, 237-249 (2011).
  35. Saumweber, T., Husse, J., Gerber, B. Innate attractiveness and associative learnability of odors can be dissociated in larval Drosophila. Chem. Senses. 36, 223-235 (2011).
  36. von Essen, A. M., Pauls, D., Thum, A. S., Sprecher, S. G. Capacity of visual classical conditioning in Drosophila larvae. Behav. Neurosci. , (2011).
  37. Honjo, K., Furukubo-Tokunaga, K. Induction of cAMP response element-binding protein-dependent medium-term memory by appetitive gustatory reinforcement in Drosophila larvae. J. Neurosci. 25, 7905-7913 (2005).
  38. Honjo, K., Furukubo-Tokunaga, K. Distinctive neuronal networks and biochemical pathways for appetitive and aversive memory in Drosophila larvae. J. Neurosci. 29, 852-862 (2009).
  39. Khurana, S., et al. Olfactory Conditioning in the Third Instar Larvae of Drosophila melanogaster Using Heat Shock Reinforcement. Behav. Genet. 42, 151-161 (2012).
  40. Tully, T., Cambiazo, V., Kruse, L. Memory through metamorphosis in normal and mutant. 14, 68-74 (1994).
  41. Michels, B., et al. Cellular site and molecular mode of synapsin action in associative learning. Learn Mem. 18, 332-344 (2011).
  42. Saumweber, T., et al. Behavioral and synaptic plasticity are impaired upon lack of the synaptic protein SAP47. J. Neurosci. 31, 3508-3518 (2011).
  43. Pfeiffer, B. D., et al. Refinement of tools for targeted gene expression in Drosophila. Genetics. 186, 735-755 (2010).
  44. Rosenzweig, M., Kang, K., Garrity, P. A. Distinct TRP channels are required for warm and cool avoidance in Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A. 105, 14668-14673 (2008).
check_url/4334?article_type=t

Play Video

Cite This Article
Apostolopoulou, A. A., Widmann, A., Rohwedder, A., Pfitzenmaier, J. E., Thum, A. S. Appetitive Associative Olfactory Learning in Drosophila Larvae. J. Vis. Exp. (72), e4334, doi:10.3791/4334 (2013).

View Video