Summary

आण्विक प्रतिरोपित स्नायु पूर्वपुस्र्ष कोशिकाओं को लक्षित इमेजिंग

Published: March 27, 2013
doi:

Summary

एक गैर इनवेसिव myoblast प्रत्यारोपण की सफलता का मूल्यांकन करने का मतलब वर्णित है. विधि एक एकीकृत संलयन रिपोर्टर जीन जीन जिनकी अभिव्यक्ति विभिन्न इमेजिंग रूपात्मकता के साथ imaged किया जा सकता है की रचना का लाभ लेता है. यहाँ, हम एक का इस्तेमाल करते हैं<em> Fluc</em> रिपोर्टर जीन अनुक्रम bioluminescence इमेजिंग के माध्यम से कोशिकाओं को लक्षित है.

Abstract

Duchenne muscular dystrophy (DMD) is a severe genetic neuromuscular disorder that affects 1 in 3,500 boys, and is characterized by progressive muscle degeneration1, 2. In patients, the ability of resident muscle satellite cells (SCs) to regenerate damaged myofibers becomes increasingly inefficient4. Therefore, transplantation of muscle progenitor cells (MPCs)/myoblasts from healthy subjects is a promising therapeutic approach to DMD. A major limitation to the use of stem cell therapy, however, is a lack of reliable imaging technologies for long-term monitoring of implanted cells, and for evaluating its effectiveness. Here, we describe a non-invasive, real-time approach to evaluate the success of myoblast transplantation. This method takes advantage of a unified fusion reporter gene composed of genes (firefly luciferase [fluc], monomeric red fluorescent protein [mrfp] and sr39 thymidine kinase [sr39tk]) whose expression can be imaged with different imaging modalities9, 10. A variety of imaging modalities, including positron emission tomography (PET), single-photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), optical imaging, and high frequency 3D-ultrasound are now available, each with unique advantages and limitations11. Bioluminescence imaging (BLI) studies, for example, have the advantage of being relatively low cost and high-throughput. It is for this reason that, in this study, we make use of the firefly luciferase (fluc) reporter gene sequence contained within the fusion gene and bioluminescence imaging (BLI) for the short-term localization of viable C2C12 myoblasts following implantation into a mouse model of DMD (muscular dystrophy on the X chromosome [mdx] mouse)12-14. Importantly, BLI provides us with a means to examine the kinetics of labeled MPCs post-implantation, and will be useful to track cells repeatedly over time and following migration. Our reporter gene approach further allows us to merge multiple imaging modalities in a single living subject; given the tomographic nature, fine spatial resolution and ability to scale up to larger animals and humans10,11, PET will form the basis of future work that we suggest may facilitate rapid translation of methods developed in cells to preclinical models and to clinical applications.

Protocol

1. रखरखाव और C2C12 myoblasts के प्रचार प्लेट एक 75 सेमी 2 फ्लास्क में C2C12 myoblasts और उच्च ग्लूकोज Dulbecco संशोधित ईगल सीरम (पारा DMEM) पूरक भ्रूण गोजातीय सीरम (FBS) के साथ 10% की एक अंतिम एकाग्रता में कोशिकाओं को बनाए रखने. कोशि…

Representative Results

50-60% confluency पर, C2C12 myoblasts transiently उपर्युक्त संलयन रिपोर्टर जीन जुगनू luciferase से बना निर्माण के साथ ट्रांसफ़ेक्ट थे fluc], monomeric लाल फ्लोरोसेंट प्रोटीन [mrfp] और sr39 thymidine kinase [sr39tk] (चित्रा 1 ए). अभिकर्मक दक्षता प्रतिदीप…

Discussion

इस अध्ययन में, हम प्रत्यारोपण के बाद एक तेज और विश्वसनीय आणविक इमेजिंग, रिपोर्टर जीन दृष्टिकोण गैर invasively लक्ष्य myoblasts / MPCs का वर्णन किया है. जबकि इस अध्ययन के माध्यम से bioluminescense (BLI) इमेजिंग, जिस तरीके में कोशि?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

लेखकों के लिए संजीव गंभीर fluc/mrfp/sr39tk रिपोर्टर जीन के उपहार के लिए धन्यवाद देना चाहूंगा. इस काम कनाडा के स्टेम सेल (SCN) नेटवर्क, और यिशै यात्रा फाउंडेशन द्वारा वित्त पोषित किया गया था.

Materials

Name of reagent Company Catalogue number Comments (optional)
C2C12 myoblasts ATCC
Dulbecco’s Modified Eagle’s Medium Life Technologies 12800-017
fetal bovine serum Life Technologies 12483020
0.25% Trypsin-EDTA Life Technologies 25200-72
Hanks Balanced Salt Solution Sigma Aldrich H6648
Lipofectamine 2000 Life Technologies 11668-019
Nikon Eclipse TE2000-5 Nikon Instruments Inc.
Xenolight D-luciferin PerkinElmer 122796 40 mg/ml in PBS

References

  1. Emery, A. E. The muscular dystrophies. Lancet. 359, 687-695 (2002).
  2. Blake, D. J., et al. Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol. Rev. 82, 291-329 (2002).
  3. Goldring, K., Partridge, T., Watt, D. Muscle stem cells. J. Pathol. 197, 457-467 (2002).
  4. Partridge, T. A. Cells that participate in regeneration of skeletal muscle. Gene Ther. 9, 752-753 (2002).
  5. Moss, F. P., Leblond, C. P. Satellite cells as the source of nuclei in muscles of growing rats. Anat. Rec. 170, 421-435 (1971).
  6. Snow, M. H. An autoradiographic study of satellite cell differentiation into regenerating myotubes following transplantation of muscles in young rats. Cell Tissue Res. 186, 535-540 (1978).
  7. Kuang, S., Rudnicki, M. A. The emerging biology of satellite cells and their therapeutic potential. Trends Mol. Med. 14 (2), 82 (2008).
  8. Hoffman, E. P., et al. Characterization of dystrophin in muscle-biopsy specimens from patients with Duchenne’s or Becker’s muscular dystrophy. N. Engl. J. Med. 318, 1363-1368 (1988).
  9. Ray, P., Tsien, R., Gambhir, S. S. Construction and validation of improved triple fusion reporter gene vectors for molecular imaging of living subjects. Cancer Res. 67 (7), 3085 (2007).
  10. Ray, P., et al. Imaging tri-fusion multimodality reporter gene expression in living subjects. Cancer Res. 64, 1323-1330 (2004).
  11. Massoud, T. F., Gambhir, S. S. Molecular imaging in living subjects: seeing fundamental biological processes in a new lights. Genes Dev. 17, 545-580 (2003).
  12. Sicinski, P., et al. The molecular basis of muscular dystrophy in the mdx mouse: a point mutation. Science. 244, 1578-1580 (1989).
  13. Mattson, M. P. . Pathogenesis of neurodegenerative disorders. In: Contemporary neuroscience. X, 294 (2001).
  14. Andersson, J. E., Bressler, B. H., Ovalle, W. K. Functional regeneration in hind limb skeletal muscle of the mdx mouse. J. Muscle Res. Cell Motil. 9, 499-515 (1988).
check_url/50119?article_type=t

Play Video

Cite This Article
Gutpell, K., McGirr, R., Hoffman, L. Molecular Imaging to Target Transplanted Muscle Progenitor Cells. J. Vis. Exp. (73), e50119, doi:10.3791/50119 (2013).

View Video