Summary

通过胎盘的外来物质和纳米材料的运输率测定<em>体外</em>人胎盘灌注型号

Published: June 18, 2013
doi:

Summary

该<em>体外</em>双循环人胎盘灌注模型可用于研究的整个人的胎盘转移的外源物和纳米颗粒。在这个视频协议中,我们描述了一个胎盘灌注成功执行所需的设备和技术。

Abstract

几十年前的人胎盘被认为是一个难以逾越的障碍的母亲和未出生的孩子之间。然而,事后发现沙利度胺致出生缺陷和后来的许多研究证明相反。今天,一些有害的外来物质,如尼古丁,海洛因,美沙酮或描述克服这一障碍的药物,以及环境污染物。随着越来越多的利用纳米技术,胎盘可能接触到新颖的纳米粒子通过曝光是意外或故意的情况下,潜在的纳米药物应用。从动物实验数据,不能外推到人类,因为胎盘是最具体物种的哺乳动物器官1。因此,于1967年2,不断修改施耐德等。体外双循环人体胎盘灌注,开发等Panigel。于1972年3,可以作为一个很好的T型车Ø研究外源性化学物质或微粒的转移。

在这里,我们专注于体外双循环人体胎盘灌注协议及其进一步发展,以获得可重复的结果。

获得知情同意后,无并发症的足月妊娠,剖腹产分娩的产妇的胎盘。一个完整的子叶胎儿和母体的血管插管灌注至少五个小时。作为一个模型颗粒大小为80,直径为500 nm的荧光标记聚苯乙烯颗粒中加入的产妇电路。 80纳米粒子能够穿过胎盘屏障,并提供一个完美的例子是通过胎盘到胎儿,而500纳米粒子被保留在胎盘组织或产妇电路的一种物质。 体外人类胎盘灌注模型提供可靠信息的少数机型之一运输外源性化学物质的行为,在一个重要的组织屏障,提供预测和临床相关数据。

Introduction

胎盘是一个复杂的器官,它是负责交换,氧气,二氧化碳,营养物和废物和在同一时间能够保持对母亲和胎儿生长彼此分开的两个血电路。此外,它可以防止由母体免疫系统排斥的孩子,并分泌激素,以维持妊娠。由4,5无侧向细胞膜融合可以形成一个真正的合胞体滋养层细胞形成的细胞的屏障。整个胎盘组织在几个子叶,其中包含一个胎儿绒毛树,代表一个功能单元的胎盘。

胎盘屏障功能的研究,发现在1960年的沙利度胺致畸形加剧。出于显而易见的原因,易位研究孕妇,不能进行。因此,各种替代车型已经开发了6,7 </s高达>。最有前途的和可能是最临床相关模型是体外人类胎盘灌注模型开发Panigel和同事2,3。

许多妇女面临不同的外来物质,如药物或环境污染物在怀孕期间8。对于一些已经在怀孕期间定期给药的药物, 在体内研究中,可以通过的产妇与脐带血液中的血药浓度相比,。然而,一般只有有限的信息,这些物质在胎儿致畸的药动学和动力学。

例如阿片类药物,如海洛因容易穿过胎盘屏障,可导致胎儿宫内发育迟缓,早产或流产9,10。因此,在丢失的情况下,节制在怀孕期间美沙酮的替代治疗的建议。 体内的人类胎盘灌注模型透露,转移美沙酮进入胎儿循环是微不足道的11,以及相关计算脐带血产妇血药浓度比分娩后12。

纳米技术是一项不断发展的领域,尤其是药品。所以,自然发生的罚款 ​​(直径小于2.5微米)和超细微粒(直径小于0.1微米)的森林火灾,火山喷发的烟雾和沙尘,暴露于纳米材料工程(至少有一维小于0.1微米13下方)增加。有关工程纳米材料的毒理学潜力提出了疑问。虽然没有人类的危害还可以证明,也有主要的实验研究表明,工程纳米颗粒可引起不良的生物反应导致毒理学结果14。最近,一些研究表明,产前暴露于空气污染与新生儿和儿童15,16需要更高的呼吸道和呼吸道炎症。此外,小颗粒可能被用来作为药物载体,专门治疗胎儿或母亲。因此,它变得明显,需要广泛的研究,不同的外源性化学物质或纳米材料和他们有能力穿过胎盘屏障。在梅内塞斯胎盘渗透到工程纳米材料的研究对当前实际的概述总结2011年17和Buerki Thurnherr 等。2012 7。

人体胎盘灌注模型的体外双循环提供了一个控制和可靠的系统研究胎盘胎盘范围广泛的其他功能,如各种内源性和外源性化合物3,11,12,18,19和运输负责的机制开发先兆子痫的病理状态,如<SUP> 20-22。在这个协议中,我们主要集中在一套,处理和方法,使研究的积累,影响和移位率了一套广泛的外来物质或纳米颗粒。

Protocol

1。准备灌注系统设置的水浴中,灌注腔室,两列进行氧合,两个蠕动泵,两个气泡陷阱,两个流加热器和一个压力传感器( 图1)组成的灌注系统。这些组件连接起来的管路部分组成的硅树脂和聚氯乙烯的材料,根据图2中的方案。最后,还有两个分别代表胎儿和母体的电路,电路。 打开水浴上,流动加热器和加热灌注室。温度应在37℃下热身灌注介…

Representative Results

图4A显示小的聚苯乙烯颗粒(80纳米)相比更大的聚苯乙烯颗粒(500纳米),不会转移到胎儿车厢被运往通过胎盘灌注曲线。每个数据点代表给定的时间点中的至少3个独立实验的平均颗粒浓度。聚苯乙烯纳米粒子胎盘传输大小依赖19。胎盘灌注3小时后,已经有20-30%的最初加入80纳米的聚苯乙烯颗粒是从母体转移到胎儿的电路,而500纳米的聚苯乙烯颗粒没有出现在胎儿的电路?…

Discussion

这里显示下方的双循环灌流,还有其他一些可能的实验配置取决于必须回答的问题。常用特别开放的胎盘灌注,稳态浓度3评估药物清除。的循环灌流设置也可以应用于,确认主动运输的内源性或外源性物质。对于这种方法的生物外源性的相同浓度的已被添加到母亲和胎儿循环。假定不存在逆浓度梯度的主动转运,可以观察到的两个电路中的任一个被检物质的积累24。值得注意的是…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作是由瑞士国家基金会(NRP 64个程序,不授予4064-131232)财政支持。

Materials

Name of the Reagent Company Catalogue Number Comments (optional)
NCTC-135 medium ICN Biomedicals, Inc. 10-911-22C could be replaced by Medium 199 from Sigma (M3769)
Sodium chloride (NaCl) Sigma-Aldrich, Fluka 71381
Potassium chloride (KCl) Hospital pharmacy also possible: Sigma (P9541)
Monosodium phosphate (NaH2PO4 · H2O) Merck 106346
Magnesium sulfate (MgSO4 · H2O) Sigma-Aldrich, Fluka 63139
Calcium chloride (CaCl, anhydrous) Merck 102388
D(+) Glucose (anhydrous) Sigma-Aldrich, Fluka 49138
Sodium bicarbonate (NaHCO3) Merck 106329
Dextran from Leuconostoc spp. Sigma-Aldrich 31389
Bovine serum albumin (BSA) Applichem A1391
Amoxicilline (Clamoxyl) GlaxoSmithKline AG 2021101A
Sodium heparin B. Braun Medical AG 3511014
Sodium hydoxide (NaOH) pellets Merck 106498 CAUTION: corrosive
Ortho-phosphoric acid 85% (H3PO4) Merck 100573 CAUTION: corrosive
Maternal gas mixture: 95% synthetic air, 5% CO2 PanGas AG
Fetal gas mixture: 95% N2, 5% CO2 PanGas AG
Antipyrine (N-methyl-14C) American Radiolabeled Chemicals, Inc. ARC 0108-50 μCi CAUTION: radioactive material (specific activity: 55mCi/mmol)
Scintillation cocktail (IrgaSafe Plus) Zinsser Analytic GmbH 1003100
Polystyrene particles 80 nm Polyscience, Inc. 17150
Polystyrene particles 500 nm Polyscience, Inc. 17152
EQUIPMENT
Water bath VWR 462-7001
Thermostat IKA-Werke GmbH & Co. KG 3164000
Peristaltic pumps Ismatec ISM 833
Bubble traps (glass) UNI-GLAS Laborbedarf
Flow heater UNI-GLAS Laborbedarf
Pressure sensor + Software for analyses MSR Electronics GmbH 145B5
Notebook Hewlett Packard
Miniature gas exchange oxygenator Living Systems Instrumentation LSI-OXR
Tygon Tube (ID: 1.6 mm; OD: 4.8 mm) Ismatec MF0028
Tubes for pumps (PharMed BPT; ID: 1.52 mm) Ismatec SC0744
Blunt cannulae (Ø 0.8 mm) Polymed Medical Center 03.592.81
Blunt cannulae (Ø 1.2 mm) Polymed Medical Center 03.592.90
Blunt cannulae (Ø 1.5 mm) Polymed Medical Center 03.592.94
Blunt cannulae (Ø 1.8 mm) Polymed Medical Center 03.952.82
Parafilm VWR 291-1212
Perfusion chamber with tissue holder (plexiglass) Internal technical department Similar equipment is available from Hemotek Limited, UK
Surgical suture material (PremiCron) B. Braun Medical AG C0026005
Winged Needle Infusion Set (21G Butterfly) Hospira, Inc. ASN 2102
Multidirectional stopcock (Discofix C-3) B. Braun Medical AG 16494C
Surgical scissors B. Braun Medical AG BC304R
Dissecting scissors B. Braun Medical AG BC162R
Needle holder B. Braun Medical AG BM200R
Dissecting forceps B. Braun Medical AG BD215R
Automated blood gas system Radiometer Medical ApS ABL800 FLEX
Multi-mode microplate reader BioTek Synergy HT
Liquid scintillation analyzer GMI, Inc. Packard Tri-Carb 2200
Scintillation tubes 5.5 ml Zinsser Analytic GmbH 3020001
Tissue Homogenizer OMNI, Inc. TH-220
pH meter + electrode VWR 662-2779

References

  1. Ala-Kokko, T. I., Myllynen, P., Vahakangas, K. Ex vivo perfusion of the human placental cotyledon: implications for anesthetic pharmacology. Int. J. Obstet. Anesth. 9, 26-38 (2000).
  2. Panigel, M., Pascaud, M., Brun, J. L. Radioangiographic study of circulation in the villi and intervillous space of isolated human placental cotyledon kept viable by perfusion. J. Physiol. (Paris). 59, 277 (1967).
  3. Schneider, H., Panigel, M., Dancis, J. Transfer across the perfused human placenta of antipyrine, sodium and leucine. Am. J. Obstet. Gynecol. 114, 822-828 (1972).
  4. Enders, A. C., Blankenship, T. N. Comparative placental structure. Adv. Drug Deliv. Rev. 38, 3-15 (1999).
  5. Takata, K., Hirano, H. Mechanism of glucose transport across the human and rat placental barrier: a review. Microsc. Res. Tech. 38, 145-152 (1997).
  6. Saunders, M. Transplacental transport of nanomaterials. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1, 671-684 (2009).
  7. Buerki-Thurnherr, T., von Mandach, U., Wick, P. Knocking at the door of the unborn child: engineered nanoparticles at the human placental barrier. Swiss Med. Wkly. 142, w13559 (2012).
  8. Gendron, M. P., Martin, B., Oraichi, D., Berard, A. Health care providers’ requests to Teratogen Information Services on medication use during pregnancy and lactation. Eur. J. Clin. Pharmacol. 65, 523-531 (2009).
  9. Burns, L., Mattick, R. P., Lim, K., Wallace, C. Methadone in pregnancy: treatment retention and neonatal outcomes. Addiction. 102, 264-270 (2007).
  10. von Mandach, U. Drug use in pregnancy. Ther. Umsch. 62, 29-35 (2005).
  11. Malek, A., Obrist, C., Wenzinger, S., von Mandach, U. The impact of cocaine and heroin on the placental transfer of methadone. Reprod. Biol. Endocrinol. 7, 61 (2009).
  12. Hutson, J. R., Garcia-Bournissen, F., Davis, A., Koren, G. The human placental perfusion model: a systematic review and development of a model to predict in vivo transfer of therapeutic drugs. Clin. Pharmacol. Ther. 90, 67-76 (2011).
  13. International Organization for Standardization (ISO). Technical Specification (ISO/TS) 27687. Nanotechnologies – Terminology and definitions for nano-objects – Nanoparticles, nanofibre and nanoplate. , (2008).
  14. Pietroiusti, A. Health implications of engineered nanomaterials. Nanoscale. 4, 1231-1247 (2012).
  15. Latzin, P., Roosli, M., Huss, A., Kuehni, C. E., Frey, U. Air pollution during pregnancy and lung function in newborns: a birth cohort study. Eur. Respir. J. 33, 594-603 (2009).
  16. Lacasana, M., Esplugues, A., Ballester, F. Exposure to ambient air pollution and prenatal and early childhood health effects. Eur. J. Epidemiol. 20, 183-199 (2005).
  17. Menezes, V., Malek, A., Keelan, J. A. Nanoparticulate drug delivery in pregnancy: placental passage and fetal exposure. Curr. Pharm. Biotechnol. 12, 731-742 (2011).
  18. Muhlemann, K., Menegus, M. A., Miller, R. K. Cytomegalovirus in the perfused human term placenta in vitro. Placenta. 16, 367-373 (1995).
  19. Wick, P., et al. Barrier capacity of human placenta for nanosized materials. Environ. Health Perspect. 118, 432-436 (2010).
  20. Dancis, J. Why perfuse the human placenta. Contrib Gynecol. Obstet. 13, 1-4 (1985).
  21. May, K., et al. Perfusion of human placenta with hemoglobin introduces preeclampsia-like injuries that are prevented by alpha1-microglobulin. Placenta. 32, 323-332 (2011).
  22. Guller, S., et al. Protein composition of microparticles shed from human placenta during placental perfusion: Potential role in angiogenesis and fibrinolysis in preeclampsia. Placenta. 32, 63-69 (2011).
  23. Challier, J. C. Criteria for evaluating perfusion experiments and presentation of results. Contrib. Gynecol. Obstet. 13, 32-39 (1985).
  24. Kraemer, J., Klein, J., Lubetsky, A., Koren, G. Perfusion studies of glyburide transfer across the human placenta: implications for fetal safety. Am. J. Obstet. Gynecol. 195, 270-274 (2006).
  25. leal, J. K., et al. Modification of fetal plasma amino acid composition by placental amino acid exchangers in vitro. J. Physiol. 582, 871-882 (2007).
  26. athiesen, L., et al. Quality assessment of a placental perfusion protocol. Reprod. Toxicol. 30, 138-146 (2010).
  27. Myllynen, P., et al. Preliminary interlaboratory comparison of the ex vivo dual human placental perfusion system. Reprod Toxicol. 30, 94-102 (2010).
  28. Malek, A., Sager, R., Schneider, H. Maternal-fetal transport of immunoglobulin G and its subclasses during the third trimester of human pregnancy. Am. J. Reprod. Immunol. 32, 8-14 (1994).
  29. Prouillac, C., Lecoeur, S. The role of the placenta in fetal exposure to xenobiotics: importance of membrane transporters and human models for transfer studies. Drug Metab. Dispos. 38, 1623-1635 (2010).
  30. Poulsen, M. S., Rytting, E., Mose, T., Knudsen, L. E. Modeling placental transport: correlation of in vitro BeWo cell permeability and ex vivo human placental perfusion. Toxicol. In Vitro. 23, 1380-1386 (2009).
  31. Mathiesen, L., Rytting, E., Mose, T., Knudsen, L. E. Transport of benzo[alpha]pyrene in the dually perfused human placenta perfusion model: effect of albumin in the perfusion medium. Basic Clin. Pharmacol. Toxicol. 105, 181-187 (2009).

Play Video

Cite This Article
Grafmüller, S., Manser, P., Krug, H. F., Wick, P., von Mandach, U. Determination of the Transport Rate of Xenobiotics and Nanomaterials Across the Placenta using the ex vivo Human Placental Perfusion Model. J. Vis. Exp. (76), e50401, doi:10.3791/50401 (2013).

View Video