Summary

在抗病毒模式识别受体RIG-I和PKR通过有限蛋白酶消化和Native PAGE监测激活

Published: July 29, 2014
doi:

Summary

先天防御病毒感染是由模式识别受体(模式识别受体)触发。这两个细胞质模式识别受体RIG-I和PKR结合到病毒签名的RNA,构象变化,低聚,并激活抗病毒信号。方法被描述,其允许方便地监控构象交换和这些细胞质的PRR的低聚。

Abstract

宿主防御病毒感染依赖于快速检测由先天免疫系统的模式识别受体(的PRR)。在细胞质中,PRRS的RIG-I和PKR绑定到特定的病毒RNA配体。该第一介导的构象转换和低聚,然后使活化的抗病毒干扰素应答。而方法来测量抗病毒宿主的基因表达被确立,方法直接监测RIG-I和PKR的激活状态是仅部分和少确立。

在这里,我们描述了两种方法来监测RIG-I和PKR感染刺激后,有一个既定的干扰素诱生剂,裂谷热病毒突变克隆13(以Cl 13)。有限的胰蛋白酶消化使分析改建蛋白酶的敏感性,说明猪蓝耳病的构象变化。裂解液从模拟感染的细胞产生的RIG-I和PKR,wherea的快速降解胰酶消化s氯13感染导致的蛋白酶抗性RIG-I片段的出现。也PKR显示了胰蛋白酶消化,这与其标志的磷酸化苏氨酸在446一致的病毒引起的局部阻力。RIG-I和PKR低聚物是由非变性聚丙烯酰胺凝胶电泳(PAGE)验证的形成。一旦感染,有RIG-I和PKR寡聚物的深厚积累,而这些蛋白仍然是模拟感染样本中单体。

有限蛋白酶消化和天然PAGE,既耦合到免疫印迹分析,允许RIG-I和PKR激活两个不同步骤的敏感和直接测量。这些技术是相对容易和快速执行,并且不需要昂贵的设备。

Introduction

在抗病毒的宿主防御的一个关键事件是由所谓的模式识别受体(模式识别受体)1,2的快速检测病原体。细胞内检测的RNA病毒感染是依赖于两个的细胞质RNA解旋酶,RIG-I(视黄酸诱导基因I)和MDA5(黑色素瘤分化相关蛋白5)3-5。 RIG-I是由两个N-末端caspase募集结构域(卡),一个中央DECH箱型RNA解旋酶结构域和C-末端结构域(CTD)的4,6。而CTD与解旋酶结构域都需要认识到非自(病毒)的RNA,卡介导的下游信号传导,导致建立抗病毒主机的状态。

如果RIG-I是在无声状态下, 在没有特定的RNA配体,第二张牌交互与中央解旋酶结构域,并保持RIG-I在自动抑制构象7-11。 RIG-I结合,以短双链(DS)的RNA带有5'-三磷酸(5'PPP),长的dsRNA,和理/ UC-丰富的RNA,经典签名结构,其存在于许多RNA病毒12-16的基因组。 RIG-I激活的两个主要特征是一个开关为闭合构象6,17和均聚的低聚6,18,19。构象开关提高了RNA结合,公开卡下游信号,并重新组成一个活跃的ATP酶活性位点8,9,11,20。低聚RIG-I复合物的形成导致下游信号接头分子的增强招募以形成用于抗病毒的信号转导11的一个平台。该RIG-I调节信号链,最终激活转录因子IRF-3的上调对于一个完整的抗病毒反应21,22干扰素(IFN-alpha/beta)基因和干扰素刺激基因,因此该基因的表达(的ISG)的。一个最佳表征ISG的是RNA活化proteiÑ ​​激酶(PKR)23。 PKR属于真核翻译起始因子2 – α(eIF2α蛋白)激酶家族,它由N-末端的双链RNA结合域和C-末端激酶结构域。激酶结构域构成PKR的激活的二聚化界面的关键,并进行了蛋白质的催化功能。 PKR结合dsRNA病毒导致其构象变化,允许二聚化和自身磷酸化苏氨酸在446等残基中。 PKR介导再eIF2α蛋白磷酸化,从而阻断病毒的mRNA 23-27的翻译。

这两个RIG-I和PKR进行重大的结构重组,形成寡聚复合物,并翻译后磷酸化/去磷酸化和泛素化10,11,19,23,24,26-29修改。为了更好地理解其中的病毒RNA结构被激活RIG-I和PKR(以及在什么阶段病毒拮抗剂可以bë干扰),它精确地确定的激活状态是很重要的。对于这两种的PRR它先前描述的活化导致胰蛋白酶抗性蛋白片段6,17,30和更高阶低聚物6,18,19的出现。然而,由于在抗病毒宿主反应1,2,24这些关键因素的丰富文献,应用直接方法似乎比较罕见的。在刺激更广泛使用的希望,我们提供方便,灵敏协议,以稳健分析RIG-I和PKR的激活状态。干扰素主管人A549细胞感染了RIG-I和PKR,减毒裂谷热病毒突变克隆13(以Cl 13)31,32的既定激活。一个简单的裂解过程后,被感染的细胞的提取物通过有限的胰蛋白酶消化/免疫印迹分析测试,以评估构象转换,并通过蓝色非变性聚丙烯酰胺凝胶电泳(PAGE)/蛋白质印迹analys是测量形成的低聚物。

Protocol

1,播种A549细胞的感染培养的A549细胞的T75烧瓶,在37℃和5%CO 2在细胞培养基(DMEM补充有10%FCS,526.6毫克/升L-谷氨酰胺,50.000 U /升青霉素和50毫克/升的链霉素)。 开始收获细胞前,热身细胞培养基,PBS和0.05%胰蛋白酶-EDTA中加热至37℃的水浴除去培养基并用10ml PBS洗细胞。再次取出PBS。 加3毫升胰蛋白酶-EDTA,并在烧瓶中分发平分。传输烧瓶在培养箱37℃和5%CO…

Representative Results

病毒受体激动剂通过RIG-I或PKR的识别触发构象开关6,17,30和齐聚6,18,27。 ,我们检测这两种活化标志物由有限蛋白酶消化和非变性聚丙烯酰胺凝胶电泳(PAGE)分别。 人类A549细胞被感染裂谷热病毒克隆13(以Cl 13),其特征在于,干扰素拮抗剂奈米35,36的突变。由于缺乏功能性奈米球,克隆13强诱导RIG-I和PKR,导致细胞12,31,32,37建立一个强大的抗病?…

Discussion

感病毒的存在和活化的抗病毒I型IFN系统是成功的先天免疫反应22是至关重要的。病毒检测是由病原体识别受体(模式识别受体),如RIG-I和PKR介导的,从而,实现了快速反应和激活抗病毒防御机制。在这里,我们描述了两种方法来直接评估RIG-I和PKR的激活状态。

有限公司蛋白酶消化作为一种工具来监控RIG-I和PKR首次由M.大风小和T.藤田6,17,和JL科尔30,?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢亚历杭德罗·布伦来自中钢协,老龄研究所提供的抗裂谷热病毒血清。在我们的实验室工作是由Forschungsförderung宝石的支持。 §2绝对值。 3 KooperationsvertragUniversitätsklinikum吉森UND马尔堡,莱布尼茨研究生院新生病毒性疾病(EIDIS),东风集团Sonderforschungsbereich(SFB)1021和东风集团Schwerpunktprogramm(SPP)1596。

Materials

Name Company Catalog Number Comments
cell culture
Dulbecco’s modified Eagle’s medium (DMEM) Gibco 21969-035
OptiMEM Gibco 31985-47
L-glutamine PAA 25030-024
penicillin-streptomycin PAA 15070-063
fetal calf serum (FCS) PAA 10270
0.05% trypsin-EDTA Gibco 25300-054
chemicals
L-1-tosylamido-2-phenylethyl chloromethyl ketone-treated (TPCK) trypsin Sigma Aldrich T1426
antibodies
mouse monoclonal anti-RIG-I antibody (ALME-1) Enzo Life Sciences ALX-804-849-C100 WB: 1:500 in 1% skim milk in TBS
mouse monoclonal anti-PKR (B10) Santa Cruz sc-6282 WB: 1:500 in 1% skim milk in TBS
rabbit monoclonal anti-P-PKR (Thr446) Epitomics 1120-1 WB: 1:1.000 in 5% BSA in TBS
rabbit polyclonal anti-IRF-3 Santa Cruz sc-9082 WB: 1:500 in 1% skim milk in TBS
rabbit monoclonal anti-P-IRF-3 (Ser386) IBL og-413 WB: 1:100 in 1% skim milk in TBS
rabbit anti-RVFV hyperimmune serum "C2" (MP-12) Kindly provided by Alejandro Brun (CISA-INIA)
WB: 1:2.000 in 1% skim milk in TBS
mouse monoclonal anti-beta-actin (8H10D10) Cell Signalling 3700 WB: 1:1.000 in 1% skim milk in TBS
polyclonal peroxidase-conjugated goat anti-rabbit Thermo Fisher 0031460 1892914 WB: 1:20.000 in 1% skim milk in TBS
polyclonal peroxidase-conjugated goat anti-mouse Thermo Fisher 0031430 1892913 WB: 1:20.000 in 1% skim milk in TBS

References

  1. Gurtler, C., Bowie, A. G. Innate immune detection of microbial nucleic acids. Trends in Microbiology. 21, 413-420 (2013).
  2. Jensen, S., Thomsen, A. R. Sensing of RNA viruses: a review of innate immune receptors involved in recognizing RNA virus invasion. Journal of Virology. 86, 2900-2910 (2012).
  3. Kato, H., Takahasi, K., Fujita, T. RIG-I-like receptors: cytoplasmic sensors for non-self RNA. Immunological Reviews. 243, 91-98 (2011).
  4. Yoneyama, M., et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nature Immunology. 5, 730-737 (2004).
  5. Andrejeva, J., et al. The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-beta promoter. Proceedings of the National Academy of Sciences of the United States of America. 101, 17264-17269 (2004).
  6. Saito, T., et al. Regulation of innate antiviral defenses through a shared repressor domain. in RIG-I and LGP2 Proc Natl Acad Sci USA. 104, 582-587 (2007).
  7. Ferrage, F., et al. Structure and dynamics of the second CARD of human RIG-I provide mechanistic insights into regulation of RIG-I activation. Structure (London, England : 1993). 20, 2048-2061 (2012).
  8. Kolakofsky, D., Kowalinski, E., Cusack, S. . A structure-based model of RIG-I activation. 18, 2118-2127 (2012).
  9. Luo, D., Kohlway, A., Vela, A., Pyle, A. M. Visualizing the determinants of viral RNA recognition by innate immune sensor RIG-I. Structure (London, England : 1993). 20, 1983-1988 (2012).
  10. Kowalinski, E., et al. Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA. Cell. 147, 423-435 (2011).
  11. Luo, D., et al. Structural insights into RNA recognition by RIG-I. Cell. 147, 409-422 (2011).
  12. Habjan, M., et al. Processing of genome 5" termini as a strategy of negative-strand RNA viruses to avoid RIG-I-dependent interferon induction. PloS One. 3, e2032 (2008).
  13. Rehwinkel, J., Reis, E. S. C. Targeting the viral Achilles’ recognition of 5′-triphosphate RNA in innate anti-viral defence. Current Opinion in Microbiology. 16, 485-492 (2013).
  14. Pichlmair, A., et al. . RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. , 314-997 (2006).
  15. Hornung, V., et al. . 5′-Triphosphate RNA is the ligand for RIG-I. , 314-994 (2006).
  16. Saito, T., Gale, M. Differential recognition of double-stranded RNA by RIG-I-like receptors in antiviral immunity. The Journal of Experimental Medicine. 205, 1523-1527 (2008).
  17. Takahasi, K., et al. Nonself RNA-sensing mechanism of RIG-I helicase and activation of antiviral immune responses. Mol Cell. 29, 428-440 (2008).
  18. Binder, M., et al. Molecular mechanism of signal perception and integration by the innate immune sensor retinoic acid-inducible gene-I (RIG-I). J Biol Chem. 286, 27278-27287 (2011).
  19. Jiang, X., et al. Ubiquitin-induced oligomerization of the RNA sensors RIG-I and MDA5 activates antiviral innate immune response. Immunity. 36, 959-973 (2012).
  20. Civril, F., et al. The RIG-I ATPase domain structure reveals insights into ATP-dependent antiviral signalling. EMBO reports. 12, 1127-1134 (2011).
  21. Hiscott, J. Triggering the innate antiviral response through IRF-3 activation. The Journal of Biological Chemistry. 282, 15325-15329 (2007).
  22. Hertzog, P. J., Williams, B. R. Fine tuning type I interferon responses. Cytokin., & Growth Factor Reviews. 24, 217-225 (2013).
  23. Pindel, A., Sadler, A. The role of protein kinase R in the interferon response. Journal of Interfero., & Cytokine Research : the Official Journal of the International Society for Interferon and Cytokine Research. 31, 59-70 (2011).
  24. Donnelly, N., Gorman, A. M., Gupta, S., Samali, A. The eIF2alpha kinases: their structures and functions. Cellular and Molecular Life Sciences CMLS. 70, 3493-3511 (2013).
  25. Cole, J. L. Activation of PKR an open and shut case. Trends in Biochemical Sciences. 32, 57-62 (2007).
  26. Dauber, B., Wolff, T. Activation of the Antiviral Kinase PKR and Viral Countermeasures. Viruses. 1, 523-544 (2009).
  27. Dey, M., et al. Mechanistic link between PKR dimerization, autophosphorylation, and eIF2alpha substrate recognition. Cell. 122, 901-913 (2005).
  28. Gack, M. U., et al. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature. 446, 916-920 (2007).
  29. Zeng, W., et al. Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell. 141, 315-330 (2010).
  30. Anderson, E., Cole, J. L. Domain stabilities in protein kinase R (PKR): evidence for weak interdomain interactions. Biochemistry. 47, 4887-4897 (2008).
  31. Habjan, M., et al. NSs protein of rift valley fever virus induces the specific degradation of the double-stranded RNA-dependent protein kinase. Journal of Virology. 83, 4365-4375 (2009).
  32. Weber, M., et al. Incoming RNA virus nucleocapsids containing a 5′-triphosphorylated genome activate RIG-I and antiviral signaling. Cell Hos., & Microbe. 13, 336-346 (2013).
  33. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72, 248-254 (1976).
  34. Wittig, I., Schagger, H. Advantages and limitations of clear-native. 5, 4338-4346 (2005).
  35. Muller, R., et al. Characterization of clone 13, a naturally attenuated avirulent isolate of Rift Valley fever virus, which is altered in the small segment. Am J Trop Med Hyg. 53, 405-411 (1995).
  36. Bouloy, M., et al. Genetic evidence for an interferon-antagonistic function of rift valley fever virus nonstructural protein NSs. Journal of Virology. 75, 1371-1377 (2001).
  37. Ikegami, T., et al. Rift Valley fever virus NSs protein promotes post-transcriptional downregulation of protein kinase PKR and inhibits eIF2alpha phosphorylation. PLoS Pathogens. 5, e1000287 (2009).
  38. Iwamura, T., et al. Induction of IRF-3/-7 kinase and NF-kappaB in response to double-stranded RNA and virus infection: common and unique pathways. Genes to Cells : Devoted to Molecula., & Cellular Mechanisms. 6, 375-388 (2001).
  39. Yoneyama, M., Suhara, W., Fujita, T. Control of IRF-3 activation by phosphorylation. Journal of Interfero., & Cytokine Research : the Official Journal of the International Society for Interferon and Cytokine Research. 22, 73-76 (2002).
  40. Bamming, D., Horvath, C. M. Regulation of signal transduction by enzymatically inactive antiviral RNA helicase proteins MDA5 RIG-I and LGP2. The Journal of Biological Chemistry. 284, 9700-9712 (2009).
  41. Wu, B., et al. Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5. Cell. 152, 276-289 (2013).
  42. Berke, I. C., Modis, Y. MDA5 cooperatively forms dimers and ATP-sensitive filaments upon binding double-stranded RNA. The EMBO Journal. 31, 1714-1726 (2012).
  43. Garcia-Sastre, A. Induction and evasion of type I interferon responses by influenza viruses. Virus Research. 162, 12-18 (2011).
  44. Taylor, K. E., Mossman, K. L. Recent advances in understanding viral evasion of type I interferon. Immunology. 138, 190-197 (2013).
  45. Goodbourn, S., Randall, R. E. The regulation of type I interferon production by paramyxoviruses. Journal of Interfero., & Cytokine Research : the Official Journal of the International Society for Interferon and Cytokine Research. 29, 539-547 (2009).
  46. Versteeg, G. A., Garcia-Sastre, A. Viral tricks to grid-lock the type I interferon system. Current Opinion in Microbiology. 13, 508-516 (2010).

Play Video

Cite This Article
Weber, M., Weber, F. Monitoring Activation of the Antiviral Pattern Recognition Receptors RIG-I And PKR By Limited Protease Digestion and Native PAGE. J. Vis. Exp. (89), e51415, doi:10.3791/51415 (2014).

View Video