Summary

制造和微流控光机振荡器测试

Published: May 29, 2014
doi:

Summary

Parametric optomechanical excitations have recently been experimentally demonstrated in microfluidic optomechanical resonators by means of optical radiation pressure and stimulated Brillouin scattering. This paper describes the fabrication of these microfluidic resonators along with methodologies for generating and verifying optomechanical oscillations.

Abstract

腔光学​​机械的参夫妇的声子模式和光子方式已在各种光学系统包括微谐振器的实验研究。因为在光机械设备的直接液浸的增加声辐射损失然而,几乎所有出版的光学机械实验在固相被执行。本文讨论了一种新近推出的空心微流控光学机械谐振器。详细方法是提供给制造这些超高Q值微谐振器,光学机械进行测试,并测量辐射压驱动的呼吸模式和SBS驱动的回音壁模式的参数振动。通过限制毛细管谐振器内的液体,高的机械和光学质量的因素,同时维持。

Introduction

腔光学机械研究声子模式和光子模式之间的微谐振器的辐射压力(RP)1-3手段的参数耦合和受激布里渊散射(SBS)4-6。 SBS和RP的机制已被证实在许多不同的光学系统中,如纤维7,微球4,6,8,磁环1,9和结晶谐振器5,10。通过这个光子-声子耦合,既冷却11和机械模的激发6,10已被证实。然而,几乎所有报告的光学机械实验与物质的固相。这是因为,光机械设备的结果大大增加了辐射声损耗,因为液体的高阻抗的直接液浸比较针对气。另外,在某些情况下,在液体中的耗散损失的机制可能会超出辐射声损耗。

Řecently,具有微细几何形状的新型中空光机械振荡器被引入12-15,并且其由设计配备用于微流体实验。该毛细管的直径沿其长度的调制,以形成多个“瓶谐振器”,能同时局限于光学回音壁共振16以及机械谐振模式17。机械共振模式的多个家庭参加,包括呼吸模式,酒杯模式和回音壁声学模式。酒玻璃(驻波)和回音壁声学(行波)时,与声波长的整数倍时的振动发生装置圆周共振形成的。光渐逝耦合到这些'瓶子'由锥形光纤18的方式的光学回音壁模式。禁闭里面19,20毛细管谐振器中的液体,如相对于外面,使高机械和光学质量的因素同时,它允许机械模式的光​​激发双方的RP和SBS的手段。如已经显示出,这些机械激励能够渗透入流体的装置12,13内,形成了一个共享固液共振模式,从而使光电机械接口内的流体环境。

在本文中,我们描述了制造,RP和SBS的驱动,和有代表性的测量结果这种新颖的光学机械系统。还提供特定的材料和工具清单。

Protocol

1,制作超高Q值微流控谐振器的毛细血管制造安装准备制造微流体光学机械谐振器以如下方式-加热的玻璃毛细管预制棒具有约10的CO 2激光辐射W在10.6微米波长,并抽出加热的毛细管使用线性电动平移台图1示出的线性平移的布置阶段,激光器,以及毛细管预制棒拉过程之前的位置。 方案适合自动化软件同时控制2个CO 2激光器(加热)和两个线性阶段…

Representative Results

用这种方法生产的毛细管是薄(30微米和200微米之间),清楚,并且非常灵活,但足够坚固,可直接处理。它以防止灰尘和水(湿气)的毛细管装置的外表面,以保持高光学品质因数(Q)是重要的。通过浸渍在水中的毛细管的一端,并通过毛细管由注射器装置吹入空气,它可以验证所述毛细管是否通过或在制造过程中是否被封锁了由于过热。 可调谐激光器可用于通过锥形光?…

Discussion

我们已经制作并测试通过采用高Q值的光学共振激发(和查询)机械振动腔光学机械和微流体之间的桥梁的新设备。令人惊讶的是多重激励机制,可在同样的设备,它有多种生成速率跨越2 MHz至11,300 MHz的机械振动模式。离心式辐射压力支持酒杯模式和呼吸模式在2-200 MHz跨度,正向受激布里渊散射允许在50-1,500 MHz范围内的机械回音壁模式,最后,落后的受激布里渊散射激发机械回音壁模式近11,000 MHz?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was funded by Startup funding from the University of Illinois at Urbana-Champaign, DARPA ORCHID program through a grant from AFOSR, the National Science Foundation through grant CMMI-1265164, and the National Science Foundation Graduate Research Fellowship program. We acknowledge enlightening discussions with Prof. Jack Harris, Prof. Pierre Meystre, Dr. Matt Eichenfield, Prof. Taher Saif, and Prof. Rashid Bashir.

Materials

Tunable IR laser Newfocus TLB-6328
Photodetectors Newfocus 1811-FC (Low speed 125MHz) / 1611-FC-AC (High speed 1GHz)
Optical fiber Corning SMF28
Silica capillary PolyMicro TSP700850
10.6 um wavelength CO2 laser Synrad 48-1KWM and 48-2KWM
UV-curing optical adhesive Thorlabs NOA81
Tubing Tygon EW-06418-01
Syringes B-D YO-07940-12
Needles Weller KDS201P
Electrical spectrum analyzer Agilent Technologies N9010A (EXA Signal Analyzer)
Tektronix 6114A (RSA, Real-time spectrum analyzer)
Optical spectrum analyzer Advantest Q8384
Oscilloscope Tektronix DPO 4104B-L
Gold mirrors II-VI Infrared 836627
Linear stage (slow) DryLin H1W1150
Linear stage (fast) PBC Linear MTB055D-0902-14F12
Fabry Perot optical spectrum analyser Thorlabs SA 200-14A (FSR: 1.5 GHz)

References

  1. Carmon, T., Rokhsari, H., Yang, L., Kippenberg, T., Vahala, K. Temporal Behavior of Radiation-Pressure-Induced Vibrations of an Optical Microcavity Phonon Mode. Physical Review Letters. 94 (22), (2005).
  2. Rokhsari, H., Kippenberg, T., Carmon, T., Vahala, K. J. Radiation-pressure-driven micro-mechanical oscillator. Optics Express. 13 (14), 5293-5301 (2005).
  3. Kippenberg, T. J., Rokhsari, H., Carmon, T., Scherer, A., Vahala, K. J. Analysis of Radiation-Pressure Induced Mechanical Oscillation of an Optical Microcavity. Physical Review Letters. 95 (3), 033901 (2005).
  4. Tomes, M., Carmon, T. Photonic Micro-Electromechanical Systems Vibrating at X-band (11-GHz) Rates. Physical Review Letters. 102 (11), (2009).
  5. Grudinin, I. S., Matsko, A. B., Maleki, L. Brillouin lasing with a CaF2 whispering gallery mode resonator. Physical Review Letters. 102 (4), 043902 (2009).
  6. Bahl, G., Zehnpfennig, J., Tomes, M., Carmon, T. Stimulated optomechanical excitation of surface acoustic waves in a microdevice. Nature Communications. 2 (403), (2011).
  7. Dainese, P., Russell, Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres. Nature Physics. 2 (6), 388-392 (2006).
  8. Carmon, T., Cross, M. C., Vahala, K. J. Chaotic Quivering of Micron-Scaled On-Chip Resonators Excited by Centrifugal Optical Pressure. Physical Review Letters. 98 (16), 167-203 (2007).
  9. Armani, D., Min, B., Martin, A., Vahala, K. J. Electrical thermo-optic tuning of ultrahigh-Q microtoroid resonators. Applied Physics Letters. 85 (22), 5439-5441 (2004).
  10. Savchenkov, A. A., Matsko, A. B., Ilchenko, V. S., Seidel, D., Maleki, L. Surface acoustic wave opto-mechanical oscillator and frequency comb generator. Optics Letters. 36 (17), 3338-3340 (2011).
  11. Bahl, G., Tomes, M., Marquardt, F., Carmon, T. Observation of spontaneous Brillouin cooling. Nature Physics. 8 (3), 203-207 (2012).
  12. Bahl, G., Kim, K. H., Lee, W., Liu, J., Fan, X., Carmon, T. Brillouin cavity optomechanics with microfluidic devices. Nature Communications. 4 (1994), (1994).
  13. Kim, K. H., et al. Cavity optomechanics on a microfluidic resonator with water and viscous liquids. Light: Science and Applications. , (2013).
  14. Sumetsky, M., Dulashko, Y., Windeler, R. S. Optical microbubble resonator. Optics Letters. 35 (7), 898-900 (2010).
  15. Lee, W., et al. A quasi-droplet optofluidic ring resonator laser using a micro-bubble. Applied Physics Letters. 99 (9), 091102-091103 (2011).
  16. Junge, C., Nickel, S., O’Shea, D., Rauschenbeutel, A. Bottle microresonator with actively stabilized evanescent coupling. Optics Letters. 36 (17), 3488-3490 (2011).
  17. Bahl, G., Fan, X., Carmon, T. Acoustic whispering-gallery modes in optomechanical shells. New Journal of Physics. 14 (11), 115026 (2012).
  18. Cai, M., Painter, O., Vahala, K. Observation of Critical Coupling in a Fiber Taper to a Silica-Microsphere Whispering-Gallery Mode System. Physical Review Letters. 85 (1), 74-77 (2000).
  19. Burg, T. P., Manalis, S. R. Suspended microchannel resonators for biomolecular detection. Applied Physics Letters. 83 (13), 2698-2610 (2003).
  20. Burg, T. P., et al. Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature. 446 (7139), 1066-1069 (2007).
  21. Li, J., Lee, H., Chen, T., Vahala, K. J. Characterization of a high coherence, Brillouin microcavity laser on silicon. Optics Express. 20 (18), (2012).
  22. Knight, J. C., Cheung, G., Jacques, F., Birks, T. A. Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper. Opt. Lett. 22 (15), 1129-1131 (1997).
  23. Boyd, R. W. . Nonlinear Optics. , (2003).
  24. Li, J., Lee, H., Vahala, K. J. Microwave synthesizer using an on-chip Brillouin oscillator. Nature Communications. 4 (2097), (2013).
  25. Carmon, T., Yang, L., Vahala, K. Dynamical thermal behavior and thermal self-stability of microcavities. Optics Express. 12 (20), 4742-4750 (2004).
check_url/51497?article_type=t

Play Video

Cite This Article
Han, K., Kim, K. H., Kim, J., Lee, W., Liu, J., Fan, X., Carmon, T., Bahl, G. Fabrication and Testing of Microfluidic Optomechanical Oscillators. J. Vis. Exp. (87), e51497, doi:10.3791/51497 (2014).

View Video