Summary

5选择序列反应时任务:注意的任务和脉冲控制鼠害

Published: August 10, 2014
doi:

Summary

这个协议描述了5-选择串行反应时间的任务,这是用来研究注意力和冲动控制啮齿动物的操作性基于任务。试验天的挑战,这是标准的任务的修改,增加了任务的灵活性,并且可以与其他操作组合,以更充分地描述的行为。

Abstract

这个协议描述了5-选择串行反应时间的任务,这是用来研究注意力和冲动控制啮齿动物的操作性基于任务。试验天的挑战,修改标准的任务,可以被用来系统地征税的神经系统控制或者注意力或冲动控制。重要的是,这些挑战对行为的跨实验室完整的动物一致的效果,并可以揭示既增强或缺陷的认知功能是看不出来的,当大鼠只考了标准的任务。对各种收集的行为测量可以被用来确定是否有其他因素( ,镇静,动机缺乏,运动障碍)正在促进性能变化。该5CSRTT的通用性进一步提高,因为它是适合于与药理学,分子和遗传技术的组合。

Introduction

5选择序列反应时任务(5CSRTT)是由特雷弗·罗宾斯和同事在剑桥大学以了解的人诊断出患有注意缺陷多动障碍(ADHD)1,2显示的行为缺陷的发展。它是基于用于研究人类3注意连续执行任务;注意力被定义为分配和维持认知资源集中在特定的刺激或信息,而忽略了其他信息4的能力。虽然任务最初是设计用于大鼠1,2使用,鼠标的版本也已经开发了5,6。

基本5CSRTT要求大鼠扫描五个孔,用于简要光刺激(线索)中的孔中的一个的呈现一水平阵列;一旦检测大鼠的刺激,必须鼻子戳在照明光圈收到糖颗粒的奖励。因此,,该任务需要大鼠分为两种注意力跨越5空间不同孔径和维持注意力,直到刺激是在一个给定的试验并在多个临床试验中的会话1,7。注意通常评估的响应的准确性。虽然5CSRTT最初被设计来评估注意力,它也被用来评估冲动行为或反应抑制1,7,8:扣压预烈性或不适当响应9的能力。在该任务中,大鼠必须截留响应的间试间隔的持续时间(ITI),并且仅当刺激呈现在孔1中的一个响应。因此过早的反应,那些ITI前刺激呈现过程中发生,为冲动行为的有用指标。

该5CSRTT是一个令人难以置信的灵活的任务,也有一些基本任务的修改( 考试当天的挑战)可实现更仔细地研究如何操作实验影响行为。例如,减少刺激持续时间或缩短ITI是不同的机制来提高任务的注意力的负荷,并且可以被用来系统地评估注意力1,7,10-12子域。相反,增加的刺激持续时间最小化任务的注意力需求;这可以被用来确定是否操纵干扰来执行任务12的基本响应要求的能力。增加了ITI的持续时间可用于确定特定的操作是否会影响脉冲响应1,7,8,13-15。此外,使用测试一天的挑战,如刚才所述,可以揭示赤字1016,17的增强行为是不是训练有素的大鼠视测试使用标准的测试参数。

重要的是,5CSRTT是经得起吨有许多不同的技术Ø结合;例如认知进行了研究离散脑区10,18-20以下病变,或选择性神经递质耗竭2,21,22。行为药理学研究已经使用,也可以全身16,17,23-28或分立颅内药物29-32管理。而且表现的急性12,16,17,29-32和慢性药物管理局13,14,23,33后容易评估。任务绩效对神经递质释放34和代谢活动35分立的大脑区域的影响也进行了评估。此外,在该任务的性能可用于大鼠分成基于基线的注意力表现30,31或冲动15,32的水平基团。最后,随着5CSRTT 5,6鼠标版本的出现,该任务已经被用来研究对注意力和IMP的遗传贡献ulse控制5,36-39。

因为5CSRTT同时评估多种认知功能,并且是适合于对具有多种药理,分子和遗传方法已经常规地用于评估的精神和神经障碍的动物模型的上下文中的认知功能障碍的组合来使用。例如,5CSRTT已被用于研究神经生物学的认知干扰在注意缺陷多动障碍(ADHD)37,40,41,精神分裂症23,33,42,药物成瘾13,14,43-45,阿尔茨海默氏病18基本39,帕金森氏病36,和亨廷顿氏病37。

该协议规定了训练大鼠的5CSRTT准则。由于多项措施性能可以收集,我们描述resul如何共同模式TS应当解释。除了常见的几种变型的基本协议中,测试天的挑战,进行说明。

Protocol

此程序需要使用的动物;这些程序批准了欧柏林大学实验动物管理和使用委员会,并按照指南实验动物46的护理和使用。 1 5CSRTT设备在5CSRTT装置的示意图如图1中提供。 该5CSRTT装置由一个操作性条件反射室(30.5 X 24.1点¯x29.2厘米)与2树脂玻璃侧壁,和一个不锈钢格栅地板。 铝前壁是圆形的,并包含5鼻子戳孔(每2.5 X 2.2 X 2.2厘米);每个?…

Representative Results

在5CSRTT的探头视觉空间注意的操纵 一种方法中,以不同任务的注意力需求是改变刺激的持续时间。作为刺激持续时间减少,%精度降低( 图3A)和%遗漏的增加( 图3B;改编自12)。由此较短的刺激持续时间增加任务的注意力需求和更长的刺激持续时间的减少任务的注意力需求。改变刺激的持续时间不能可靠地影响过早响应和响应延迟(?…

Discussion

该5CSRTT是一种广泛使用的任务,以评估在啮齿类动物的关注和冲动控制。注意的是最常见的反应1,7,10的精度测量。因为响应不包括遗漏,并因为正确和不正确响应的准确性具有相同的反应条件( ,在开口的鼻子戳),精度不运动能力,动机或镇静的影响。在%疏漏作为关注的指标,因为训练有素的啮齿动物往往会隐瞒的回应,而不是'想'如果他们不确?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作是由卫生批授予TAP国家研究院​​(R15MH098246)的支持。

Materials

Five Hole Nose Poke Wall Chamber Package Med-Associates MED-NP5L-D1 Alternatively one could use the standard package (Catalog #:MED-NP5L-B1)
Deluxe
Dustless Precision Pellet Bio-Serv F0021 45 mg Purified

References

  1. Robbins, T. The 5-choice serial reaction time task: behavioural pharmacology and functional neurochemistry. Psychopharmacology (Berl). 163, 362-380 (2002).
  2. Carli, M., Robbins, T. W., Evenden, J. L., Everitt, B. J. Effects of lesions to ascending noradrenergic neurones on performance of a 5-choice serial reaction task in rats; implications for theories of dorsal noradrenergic bundle function based on selective attention and arousal. Behav. Brain. Res. 9, 361-380 (1983).
  3. Leonard, J. A. 5 choice serial reaction apparatus. Med. Res. Council. Appl. Psychol. Res. , 326-359 (1959).
  4. Muir, J. L. Attention and stimulus processing in the rat. Brain. Res. Cogn. Brain. Res. 3, 215-225 (1996).
  5. Humby, T., Laird, F. M., Davies, W., Wilkinson, L. S. Visuospatial attentional functioning in mice: interactions between cholinergic manipulations and genotype. Eur. J. Neurosci. 11, 2813-2823 (1999).
  6. Humby, T., Wilkinson, L., Dawson, G. Assaying aspects of attention and impulse control in mice using the 5-choice serial reaction time task. Curr. Protoc. Neurosci. (8), (2005).
  7. Bari, A., Dalley, J. W., Robbins, T. W. The application of the 5-choice serial reaction time task for the assessment of visual attentional processes and impulse control in rats. Nat. Protoc. 3, 759-767 (2008).
  8. Dalley, J. W., Mar, A. C., Economidou, D., Robbins, T. W. Neurobehavioral mechanisms of impulsivity: Fronto-striatal systems and functional neurochemistry. Pharm. Biochem. Behav. 90, 250-260 (2008).
  9. Evenden, J. L. Varieties of Impulsivity. Psychopharmacology (Berl). 146, 348-361 (1999).
  10. Amitai, N., Markou, A. Comparative effects of different test day challenges on performance in the 5-choice serial reaction time task. Behav. Neurosci. 125, 764-774 (2011).
  11. Chudasama, Y., Passetti, F., Rhodes, S. E., Lopian, D., Desai, A., Robbins, T. W. Dissociable aspects of performance on the 5-choice serial reaction time task following lesions of the dorsal anterior cingulate, infralimbic and orbitofrontal cortex in the rat: differential effects on selectivity, impulsivity and compulsivity. Behav. Brain. Res. (146), 105-119 (2003).
  12. Asinof, S. K., Paine, T. A. Inhibition of GABA synthesis in the prefrontal cortex increases locomotor activity but does not affect attention in the 5-choice serial reaction time task. Neuropharmacology. 65, 39-47 (2013).
  13. Dalley, J. W., Lääne, K., Pena, Y., Theobald, D. E., Everitt, B. J., Robbins, T. W. Attentional and motivational deficits in rats withdrawn from intravenous self-administration of cocaine or heroin. Psychopharmacology (Berl). 182, 579-587 (2005).
  14. Dalley, J. W., et al. Cognitive sequelae of intravenous amphetamine self-administration in rats: evidence for selective effects on attentional performance. Neuropsychopharmacology. 30, 525-537 (2005).
  15. Moreno, M., et al. Divergent effects of D2/3 receptor activation in the nucleus accumbens core and shell on impulsivity and locomotor activity in high and low impulsive rats. Psychopharmacology (Berl). (228), 19-30 (2013).
  16. Lambe, E. K., Olausson, P., Horst, N. K., Taylor, J. R., Aghajanian, G. K. Hypocretin and nicotine excite the same thalamocortical synapses in prefrontal cortex: correlation with improved attention in rat. J. Neurosci. 25, 5225-5229 (2005).
  17. Navarra, R., et al. Effects of atomoxetine and methylphenidate on attention and impulsivity in the 5-choice serial reaction time test. Prog. Neuropsychopharmacol. Biol. Psychiatry. 32, 34-41 (2008).
  18. Maddux, J. M., Holland, P. C. Effects of dorsal or ventral medial prefrontal cortical lesions on five-choice serial reaction time performance in rats. Behav. Brain. Res. 221, 63-74 (2011).
  19. Inglis, W. L., Olmstead, M. C., Robbins, T. W. Selective deficits in attentional performance on the 5-choice serial reaction time task following pedunculopontine tegmental nucleus lesions. Behav. Brain. Res. 123, 117-131 (2001).
  20. Baunez, C., Robbins, T. W. Bilateral lesions of the subthalamic nucleus induce multiple deficits in an attention task in rats. Eur. J. Neurosci. 9, 2086-2099 (1997).
  21. Cole, B. J., Robbins, T. W. Effects of 6-hydroxydopamine lesions of the nucleus accumbens septi on performance of a 5-choice serial reaction time task in rats: implications for theories of selective attention and arousal. Behav. Brain. Res. 33, 165-179 (1989).
  22. Harrison, A. A., Everitt, B. J., Robbins, T. W. Doubly dissociable effects of median- and dorsal-raphé lesions on the performance of the five-choice serial reaction time test of attention in rats. Behav. Brain. Res. 89, 135-149 (1997).
  23. Paine, T. A., Tomasiewicz, H. C., Zhang, K., Carlezon, W. A. Sensitivity of the five-choice serial reaction time task to the effects of various psychotropic drugs in Sprague-Dawley rats. Biol. Psychiatry. 62, 687-693 (2007).
  24. Paine, T. A., Carlezon, W. A. Effects of antipsychotic drugs on MK-801-induced attentional and motivational deficits in rats. Neuropharmacology. 56, 788-797 (2009).
  25. Grottick, A. J., Higgins, G. A. Assessing a vigilance decrement in aged rats: effects of pre-feeding, task manipulation, and psychostimulants. Psychopharmacology (Berl). 164, 33-41 (2002).
  26. Hahn, B., Shoaibm, M., Stolerman, I. P. Nicotine-induced enhancement of attention in the five-choice serial reaction time task: the influence of task demands. Psychopharmacology (Berl). 162, 129-137 (2002).
  27. Pattij, T., Schetters, D., Schoffelmeer, A. N., van Gaalen, M. M. On the improvement of inhibitory response control and visuospatial attention by indirect and direct adrenoceptor agonists. Psychopharmacology (Berl). 219, 327-340 (2012).
  28. Mirza, N. R., Bright, J. L. Nicotine-induced enhancements in the five-choice serial reaction time task in rats are strain-dependent. Psychopharmacology (Berl). 154, 8-12 (2001).
  29. Pezze, M. A., Dalley, J. W., Robbins, T. W. Remediation of attentional dysfunction in rats with lesions of the medial prefrontal cortex by intra-accumbens administration of the dopamine D2/3 receptor antagonist sulpiride. Psychopharmacology (Berl). 202, 307-313 (2009).
  30. Granon, S., Passetti, F., Thomas, K. L., Dalley, J. W., Everitt, B. J., Robbins, T. W. Enhanced and impaired attentional performance after infusion of D1 dopaminergic receptor agents into rat prefrontal cortex. J. Neurosci. 20, 1208-1215 (2000).
  31. Paine, T. A., Neve, R. L., Carlezon, W. A. Attention deficits and hyperactivity following inhibition of cAMP-dependent protein kinase within the medial prefrontal cortex of rats. Neuropsychopharmacology. 34, 2143-2155 (2009).
  32. Besson, M., et al. Dissociable control of impulsivity in rats by dopamine d2/3 receptors in the core and shell subregions of the nucleus accumbens. Neuropsychopharmacology. 35, 560-569 (2010).
  33. Amitai, N., Markou, A. Chronic nicotine improves cognitive performance in a test of attention but does not attenuate cognitive disruption induced by repeated phencyclidine administration. Psychopharmacology (Berl). 202, 275-286 (2009).
  34. Dalley, J. W., Theobald, D. E., Eagle, D. M., Passetti, F., Robbins, T. W. Deficits in impulse control associated with tonically-elevated serotonergic function in rat prefrontal cortex. Neuropsychopharmacology. 26, 716-728 (2002).
  35. Barbelivien, A., Ruotsalainen, S., Sirviö, J. Metabolic alterations in the prefrontal and cingulate cortices are related to behavioral deficits in a rodent model of attention-deficit hyperactivity disorder. Cereb. Cortex. 11, 1056-1063 (2001).
  36. Peña-Oliver, Y., et al. Deletion of alpha-synuclein decreases impulsivity in mice. Genes. Brain. Behav. 11, 137-146 (2012).
  37. Trueman, R. C., Dunnett, S. B., Jones, L., Brooks, S. P. Five choice serial reaction time performance in the HdhQ92 mouse model of Huntington’s disease. Brain. Res. Bull. 88, 163-170 (2012).
  38. Pattij, T., Janssen, M. C., Loos, M., Smit, A. B., Schoffelmeer, A. N., van Gaalen, M. M. Strain specificity and cholinergic modulation of visuospatial attention in three inbred mouse strains. Genes Brain Behav. 6, 579-587 (2007).
  39. Romberg, C., Mattson, M. P., Mughal, M. R., Bussey, T. J., Saksida, L. M. Impaired attention in the 3xTgAD mouse model of Alzheimer’s disease: rescue by donepezil (Aricept). J. Neurosci. 31, 3500-3507 (2011).
  40. Paterson, N. E., Ricciardi, J., Wetzler, C., Hanania, T. Sub-optimal performance in the 5-choice serial reaction time task in rats was sensitive to methylphenidate, atomoxetine and d-amphetamine, but unaffected by the COMT inhibitor tolcapone. Neurosci. Res. 69, 41-50 (2011).
  41. Puumala, T., Ruotsalainen, S., Jäkälä, P., Koivisto, E., Riekkinen, P., Sirviö, J. Behavioral and pharmacological studies on the validation of a new animal model for attention deficit hyperactivity disorder. Neurobiol. Learn. Mem. (66), 198-211 (1996).
  42. Amitai, N., Markou, A. Disruption of performance in the five-choice serial reaction time task induced by administration of N-methyl-D-aspartate receptor antagonists: Relevance to cognitive dysfunction in schizophrenia. Biol. Psychiatry. 68, 5-16 (2010).
  43. Winstanley, C. A., et al. Increased impulsivity during withdrawal from cocaine self-administration: role for DeltaFosB in the orbitofrontal cortex. Cereb. Cortex. 19, 435-444 (2009).
  44. Shoaib, M., Bizarro, L. Deficits in a sustained attention task following nicotine withdrawal in rats. Psychopharmacology (Berl). 178, 211-222 (2005).
  45. Semenova, S., Stolerman, I. P., Markou, A. Chronic nicotine administration improves attention while nicotine withdrawal induces performance deficits in the 5-choice serial reaction time task in rats. Pharmacol. Biochem. Behav. 87, 360-368 (2007).
  46. . National Academy Press. Guide for the Care and Use of Laboratory Animals. National Academy Press. , (1996).
  47. Nemeth, C. L., et al. Role of kappa-opioid receptors in the effects of salvinorin A and ketamine on attention in rats. Psychopharmacology (Berl). 210, 263-274 (2010).
  48. Rowland, N. E. Food or fluid restriction in common laboratory animals: balancing welfare considerations with scientific inquiry. Comp. Med. 57, 149-160 (2007).
  49. Carr, K. D. Chronic food restriction: enhancing effects on drug reward and striatal cell signaling. Physiol. Behav. 91, 459-472 (2007).
  50. Auclair, A. L., Besnard, J., Newman-Tancredi, A., Depoortère, R. The five choice serial reaction time task: comparison between Sprague-Dawley and Long-Evans rats on acquisition of task, and sensitivity to phencyclidine. Pharmacol. Biochem. Behav. 92, 363-369 (2009).
  51. Patel, S., Stolerman, I. P., Asherson, P., Sluyter, F. Attentional performance of C57BL/6 and DBA/2 mice in the 5-choice serial reaction time task. Behav. Brain Res. (170), 197-203 (2006).
  52. Higgins, G. A., Breysse, N. Rodet model of attention: The 5-choice serial reaction time task. Current Protocols in Pharmacology. (5), (2008).
check_url/51574?article_type=t

Play Video

Cite This Article
Asinof, S. K., Paine, T. A. The 5-Choice Serial Reaction Time Task: A Task of Attention and Impulse Control for Rodents. J. Vis. Exp. (90), e51574, doi:10.3791/51574 (2014).

View Video