Summary

三维石墨电极介电泳装置的研制

Published: June 22, 2014
doi:

Summary

与高通量电位A微型用于演示的三维(3D)介电电泳(DEP)的新颖材料。石墨烯纳米薄片纸,双面胶带交替堆叠;一个700微米的微井钻横切层。的聚苯乙烯小珠的DEP行为表现在微井。

Abstract

采用50μm厚的石墨烯纸和100μm的双面胶带的新型三维电极微型装置的设计和制作方法进行说明。该协议详细说明了程序,以构建一个通用的,可重复使用的,多个层,夹层介电电泳室。具体而言,为50微米×0.7 2cm×2cm的石墨烯纸和5层的双面胶带6层交替地叠在一起,然后夹紧到载玻片上。然后一个700微米直径的微孔中穿过叠层结构用计算机控制的微型钻孔机钻孔。邻近的石墨烯层之间的带层的绝缘性能有保证的电阻测试。银导电环氧树脂连接的石墨烯纸交替层形成的石墨烯纸和外部铜导线电极之间的稳定连接。成品器件,然后夹紧并密封到载玻片上。电场梯度在t蓝本他的多层器件。 6微米的聚苯乙烯珠介电行为进行了论证,在1毫米深的微孔,具有中等电导率从0.0001 S / m至1.3 S / m的,并应用于信号频率从100 Hz至10 MHz。负的介电电泳反应,观察在三个维度在大部分导电频率空间和交叉频率值与先前文献报道值相一致。该设备并没有阻止交流电电渗和电热流动,这发生在低频和高频区域,分别为。在此设备中使用的石墨烯纸是多才多艺,随后可能作为一个生物传感器后的介电电泳的刻画是完整的。

Introduction

石墨烯是以其高品质的电子特性和潜在的化学和生物传感器的应用1一种新型材料。石墨纳米片已用于催化剂载体2,3,4的生物传感器,超级电容器5,及复合电极,包括石墨烯/聚苯胺和硅纳米颗粒/石墨复合材料6-8。此手稿描述作为一个独特的三维(3D)的电极,分层微流体装置利用石墨烯纸。石墨烯纸电极层叠绝缘性的双面胶带,并钻出一个室,在该进行的聚苯乙烯珠三维AC介电电泳。

介电电泳(DEP)是指可极化粒子的运动下的非均匀电场。当颗粒都或多或少极化比周围介质,RESU正DEP(pDEP)或负的DEP(NDEP)发生,lting向着最强或最弱的电场运动分别。这种非线性的电动工具已被用于分离,分选,陷印,和识别粒子和生物细胞9-15中。经历的一个偏振粒子的介电电泳力是电场梯度,粒子半径和形状,粒子的介电性能,包括电导率和介电常数,以及介质电导率和介电常数的函数。在传统的两维(2D)DEP,粒子运动是在典型的微加工表面的电极之间形成的电场梯度的主平面;相比,在面内方向中的大多数设备在垂直方向上的运动可忽略不计。但是,利用的电场梯度为三维DEP此第三维允许更高的样品通量并增加了通用性,设计新的和改进的介电电泳分离,其中流动是特拉沃注册结构工程师的磁场梯度16,17。其他具体的设计包括三维绝缘体为基础的DEP 18,三维碳电极的DEP 13,19,和3D电镀DEP 10。就证明了研成三维结构,这种装置可以以连续流模式进行操作,以实现更高的吞吐量。在3D粒子的运动在我们的三维分层观测设备实现频率和介质电导率通过光学显微镜在不同焦距的高度的函数。

Fatoyinbo 等人首先报道了DEP在3D使用交替叠放30μm的铝箔和150微米的环氧树脂膜20层叠电极/绝缘结构。夜蛾等。然后设计类似于3D层叠电极与35μm铜胶带和118微米的聚酰亚胺胶粘剂21。这部作品借用了3D井设计22,23以及唯一地利用为50μm的石墨烯纸的方便作为导电层和100μm的双面胶带作为绝缘层,其中实现密封和足够的电屏蔽。石墨烯纸的多功能性是三维电极微型器件具有明显的优势,因为石墨烯纳米片必须兼任生物传感器,其中该组先前表明24的能力。

石墨烯纸/聚合物内取得的磁场梯度层叠三维微器件依赖于微井的尺寸,石墨烯纸层,和所施加的电场。关键尺寸包括垂直电极间距(导电和绝缘层厚度)和微孔的直径和高度(通过层层叠确定)。该电信号可以通过振幅和频率进行调谐。当前设备的结构是间歇操作,但是可以根据一个连续流动的装置。该设备厂这里描述rication技术适用于开发3D层叠电极与各种各样的石墨烯纳米薄片属性简单地通过交换所使用的石墨烯纸。利用石墨烯纸的优点是通用性的物理和化学性能,降低了费用,并且石墨烯纳米片可以同时作为生物传感器来检测范围广bioanalytes 24。高吞吐量的3D DEP系统的长期目标是,以迅速确定细胞类型25-27,或实现无标记,电介导的细胞病变细胞分选从健康细胞28的人口。本文演示材料的优化和设备的准备和操作,后跟说明和典型结果分析。

Protocol

1,制作出层叠电极/绝缘三维结构为6的石墨烯层,5层胶带设备,切石墨烯纸用手术刀或类似刀片和直边尺到60.7厘米×1.5cm的矩形,并用剪刀切开双面压敏胶粘带为51.3厘米X〜5厘米条纹。 注:由于如图1a所示,这会产生一个3接地电极,3个交流信号电极装置。该7毫米导电层宽度足够窄,以适应到载玻片上,但足够宽,以便于钻孔。 2毫米的长度不容易在重复使用时破裂并有?…

Representative Results

在6微米的聚苯乙烯珠的介电电泳实验是在0.38 立方毫米的圆柱形微孔进行。结果表明,一个三维层叠的石墨烯纸为基础的装置可以说明类似的介电电泳的签名作为三维金属箔层压装置20,21,传统的二维金属电极26,27,和二维绝缘体装置25。在下面的实验中,一个15 V 峰峰值 AC信号被施加并且频率从100赫兹到10 MHz 30改变。定性DEP结果在时间0现场应用…

Discussion

这个手稿详细介绍用于制造新型的6石墨烯层和5层带微型协议。此外,设备的操作是通过6.08微米的聚苯乙烯珠观测到的DEP行为以及一个独特的,几何有关粒子速度分析方法说明。这种多用途的方法构造非线性电动设备比电极与流体层的微细加工技术成本更低,同时产生同样可靠的结果。

此外,这种新颖的三维石墨烯纸微型产生了同意这两个理论预测行为的实验介电泳结果和?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

感谢XG科学的慷慨捐赠的石墨烯纸。由于三弗里德里希博士慷慨地让我们用微钻设备。特别感谢扩展到Tayloria亚当斯为叙述的视频。

Materials

Reagents
Name of Reagent Company Catalogue Number Comments
Polystyrene Beads Spherotech, Inc. PP-60-10 6.08 um diameter
Graphene paper XG Sciences, Inc. XG Leaf B-072
Double sided tape 3M N/A 136 office tape
Silver conductive epoxy MG chemicals 8331-14G Part A &B included
Mannitol Sigma Aldrich 091M0020V
Phosphate buffer saline OmniPur 0381C490
Equipment:
Name of equipment  Company Catalogue Number Comments
Microscope     (CCD Camera) Zeiss Axiovert 200M
Function/waveform generator Agilent 33250A
Syringe Hamilton 84505
Paper Clamp ADAMS 3300-50-3848
Oven Fisher Scientific 280A
Multimeter OMEGA HHM25
Micro-milling machine AEROTECH ABL1500 stages/A3200 Npaq controller
End mill ULTRATOOL 708473
AxioVision Zeiss Version4.8

References

  1. Geim, A. K., Novoselov, K. S. The rise of graphene. Nature Materials. 6 (3), 183-191 (2007).
  2. Jafri, R. I., Rajalakshmi, N., Ramaprabhu, S. Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell. Journal of Materials Chemistry. 20 (34), 7114-7117 (2010).
  3. Kavan, L., Yum, J. H., Gratzel, M. Graphene Nanoplatelets Outperforming Platinum as the Electrocatalyst in Co-Bipyridine-Mediated Dye-Sensitized Solar Cells. Nano Letters. 11 (12), 5501-5506 (2011).
  4. Aravind, S. S. J., Baby, A. T. T., Arockiadoss, T., Rakhi, R. B., Ramaprabhu, S. A cholesterol biosensor based on gold nanoparticles decorated functionalized graphene nanoplatelets. Thin Solid Films. 519 (16), 5667-5672 (2011).
  5. Si, P., Ding, S. J., Lou, X. W., Kim, D. H. An electrochemically formed three-dimensional structure of polypyrrole/graphene nanoplatelets for high-performance supercapacitors. Rsc Advances. 1 (7), 1271-1278 (2011).
  6. Wang, D. -. W., et al. Fabrication of Graphene/Polyaniline Composite Paper via In Situ Anodic Electropolymerization for High-Performance Flexible Electrode. ACS Nano. 3 (7), 1745-1752 (2009).
  7. Lee, J. K., Smith, K. B., Hayner, C. M., Kung, H. H. Silicon nanoparticles-graphene paper composites for Li ion battery anodes. Chem Commun (Camb). 46 (12), 2025-2027 (2010).
  8. Kavan, L., Yum, J. H., Gratzel, M. Optically Transparent Cathode for Dye-Sensitized Solar Cells Based on Graphene Nanoplatelets. ACS Nano. 5 (1), 165-172 (2011).
  9. Martinez-Duarte, R. Microfabrication technologies in dielectrophoresis applications–a review. Electrophoresis. 33 (21), 3110-3132 (2012).
  10. Yamamoto, M., et al. Patterning with particles using three-dimensional interdigitated array electrodes with negative dielectrophoresis and its application to simple immunosensing. Electrochimica Acta. 82, 35-42 (2012).
  11. Doh, I., Kim, Y., Cho, Y. H. A particle trapping chip using the wide and uniform slit formed by a deformable membrane with air bubble plugs. Current Applied Physics. 13 (5), 902-906 (2013).
  12. Lin, S. C., Lu, J. C., Sung, Y. L., Lin, C. T., Tung, Y. C. A low sample volume particle separation device with electrokinetic pumping based on circular travelling-wave electroosmosis. Lab on a Chip. 13 (15), 3082-3089 (2013).
  13. Martinez-Duarte, R., Camacho-Alanis, F., Renaud, P., Ros, A. Dielectrophoresis of lambda-DNA using 3D carbon electrodes. Electrophoresis. 34 (7), 1113-1122 (2013).
  14. Yang, S. M., Tseng, S. Y., Chen, H. P., Hsu, L., Liu, C. H. Cell patterning via diffraction-induced optoelectronic dielectrophoresis force on an organic photoconductive chip. Lab on a Chip. 13 (19), 3893-3902 (2013).
  15. Srivastava, S. K., Gencoglu, A., Minerick, A. R. DC insulator dielectrophoretic applications in microdevice technology: a review. Anal Bioanal Chem. 399 (1), 301-321 (2011).
  16. Liao, S. H., Cheng, I. F., Chang, H. C. Precisely sized separation of multiple particles based on the dielectrophoresis gradient in the z-direction. Microfluidics and Nanofluidics. 12 (1-4), 1-4 (2012).
  17. Bajaj, P., Marchwiany, D., Duarte, C., Bashir, R. Patterned three-dimensional encapsulation of embryonic stem cells using dielectrophoresis and stereolithography. Adv Healthc Mater. 2 (3), 450-458 (2013).
  18. Braff, W. A., Pignier, A., Buie, C. R. High sensitivity three-dimensional insulator-based dielectrophoresis. Lab Chip. 12 (7), 1327-1331 (2012).
  19. Martinez-Duarte, R., Gorkin 3rd, R. A., Abi-Samra, K., Madou, M. J. The integration of 3D carbon-electrode dielectrophoresis on a CD-like centrifugal microfluidic platform. Lab Chip. 10 (8), 1030-1043 (2010).
  20. Fatoyinbo, H. O., Kamchis, D., Whattingham, R., Ogin, S. L., Hughes, M. P. A high-throughput 3-D composite dielectrophoretic separator. Ieee Transactions on Biomedical Engineering. 52 (7), 1347-1349 (2005).
  21. Hubner, Y., Hoettges, K. F., Kass, G. E. N., Ogin, S. L., Hughes, M. P. Parallel measurements of drug actions on Erythrocytes by dielectrophoresis, using a three-dimensional electrode design. Iee Proceedings-Nanobiotechnology. 152 (4), 150-154 (2005).
  22. Abdul Razak, M. A., Hoettges, K. F., Fatoyinbo, H. O., Labeed, F. H., Hughes, M. P. Efficient dielectrophoretic cell enrichment using a dielectrophoresis-well based system. Biomicrofluidics. 7 (6), (2013).
  23. Hughes, M. P. . O. S., Hoettges, K. F., Wattingham, R. . Device for Dielectrophoretic Manipulation of Particles. , (2005).
  24. Heldt, C. L., et al. Stacked graphene nanoplatelet paper sensor for protein detection. . Sensors and Actuators B-Chemica. 181, 92-98 (2013).
  25. Srivastava, S. K., Artemiou, A., Minerick, A. R. Direct current insulator-based dielectrophoretic characterization of erythrocytes: ABO-Rh human blood typing. Electrophoresis. 32 (18), 2530-2540 (2011).
  26. Leonard, K. M., Minerick, A. R. Explorations of ABO-Rh antigen expressions on erythrocyte dielectrophoresis: Changes in cross-over frequency. Electrophoresis. 32 (18), 2512-2522 (2011).
  27. Srivastava, S. K., Daggolu, P. R., Burgess, S. C., Minerick, A. R. Dielectrophoretic characterization of erythrocytes: Positive ABO blood types. Electrophoresis. 29 (24), 5033-5046 (2008).
  28. Minerick, A. R. The rapidly growing field of micro and nanotechnology to measure living cells. AIChE Journal. 54 (9), 2230-2237 (2008).
  29. Garza-Garcia, L. D., Perez-Gonzalez, V. H., Perez-Sanchez, O. A., Lapizco-Encinas, B. H. Electrokinetic Mobilities Characterization and Rapid Detection of Microorganisms in Glass Microchannels. Chemical Engineering & Technology. 34 (3), 371-378 (2011).
  30. Lopez-de la Fuente, M. S., et al. An electric stimulation system for electrokinetic particle manipulation in microfluidic devices. Rev Sci Instrum. 84 (3), (2013).
  31. Chen, D. F., Du, H., Li, W. H. A 3D paired microelectrode array for accumulation and separation of microparticles. Journal of Micromechanics and Microengineering. 16 (7), 1162-1169 (2006).
  32. Chu, H., Doh, I., Cho, Y. H. A three-dimensional (3D) particle focusing channel using the positive dielectrophoresis (pDEP) guided by a dielectric structure between two planar electrodes. Lab on a Chip. 9 (5), 686-691 (2009).
  33. Millet, L. J., Park, K., Watkins, N. N., Hsia, K. J., Bashir, R. Separating beads and cells in multi-channel microfluidic devices using dielectrophoresis and laminar flow. J Vis Exp. , (2011).
  34. Weiss, N. G., et al. Dielectrophoretic mobility determination in DC insulator-based dielectrophoresis. Electrophoresis. 32 (17), 2292-2297 (2011).
  35. Auerswald, J., Knapp, H. F. Quantitative assessment of dielectrophoresis as a micro fluidic retention and separation technique for beads and human blood erythrocytes. Microelectronic Engineering. 67-8, 879-886 (2003).
  36. Park, S., Zhang, Y., Wang, T. H., Yang, S. Continuous dielectrophoretic bacterial separation and concentration from physiological media of high conductivity. Lab on a Chip. 11 (17), 2893-2900 (2011).
  37. Sun, T., Holmes, D., Gawad, S., Green, N. G., Morgan, H. High speed multi-frequency impedance analysis of single particles in a microfluidic cytometer using maximum length sequences. Lab on a Chip. 7 (8), 1034-1040 (2007).
  38. Hughes, M. P., Morgan, H. Dielectrophoretic Characterization and Separation of Antibody-Coated Submicrometer Latex Spheres. Analytical Chemistry. 71 (16), 3441-3445 (1999).
  39. Liang, W. F., et al. Simultaneous separation and concentration of micro- and nano-particles by optically induced electrokinetics. Sensors and Actuators a-Physical. 193, 103-111 (2013).
  40. White, C. M., Holland, L. A., Famouri, P. Application of capillary electrophoresis to predict crossover frequency of polystyrene particles in dielectrophoresis. Electrophoresis. 31 (15), 2664-2671 (2010).
  41. Wu, J., Ben, Y. X., Battigelli, D., Chang, H. C. Long-range AC electroosmotic trapping and detection of bioparticles. Industrial & Engineering Chemistry Research. 44 (8), 2815-2822 (2005).
  42. Zhou, H., White, L. R., Tilton, R. D. Lateral separation of colloids or cells by dielectrophoresis augmented by AC electroosmosis. J Colloid Interface Sci. 285 (1), 179-191 (2005).
  43. Green, N. G., Ramos, A., Gonzalez, A., Morgan, H., Castellanos, A. Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes I. Experimental measurements. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 61 (4 Pt B), 4011-4018 (2000).
  44. Green, N. G., Ramos, A., Gonzalez, A., Castellanos, A., Morgan, H. Electrothermally induced fluid flow on microelectrodes. Journal of Electrostatics. 53 (2), 71-87 (2001).
  45. Gonzalez, A., Ramos, A., Morgan, H., Green, N. G., Castellanos, A. Electrothermal flows generated by alternating and rotating electric fields in microsystems. Journal of Fluid Mechanics. 564, 415-433 (2006).
  46. Park, S., Koklu, M., Beskok, A. Particle trapping in high-conductivity media with electrothermally enhanced negative dielectrophoresis. Anal Chem. 81 (6), 2303-2310 (2009).
  47. Sin, M. L., Gau, V., Liao, J. C., Wong, P. K. Electrothermal Fluid Manipulation of High-Conductivity Samples for Laboratory Automation Applications. JALA Charlottesv Va. 15 (6), 426-432 (2010).
  48. Liao, S. -. H., Cheng, I. F., Chang, H. -. C. Precisely sized separation of multiple particles based on the dielectrophoresis gradient in the z-direction. Microfluidics and Nanofluidics. 12 (1-4), 201-211 (2012).
  49. Gencoglu, A., Minerick, A. Chemical and morphological changes on platinum microelectrode surfaces in AC and DC fields with biological buffer solutions. Lab on a Chip. 9 (13), 1866-1873 (2009).
  50. Bocchi, M., et al. Dielectrophoretic trapping in microwells for manipulation of single cells and small aggregates of particles. Biosensors & Bioelectronics. 24 (5), 1177-1183 (2009).
  51. Li, P., Stratton, Z. S., Dao, M., Ritz, J., Huang, T. J. Probing circulating tumor cells in microfluidics. Lab on a Chip. , (2013).
  52. Rimmele, T., Kellum, J. A. Clinical review: Blood purification for sepsis. Critical Care. 15 (1), (2011).
check_url/51696?article_type=t

Play Video

Cite This Article
Xie, H., Tewari, R., Fukushima, H., Narendra, J., Heldt, C., King, J., Minerick, A. R. Development of a 3D Graphene Electrode Dielectrophoretic Device. J. Vis. Exp. (88), e51696, doi:10.3791/51696 (2014).

View Video