Summary

Os ensaios bioquímicos para analisar as actividades de ATP-dependente cromatina remodelação Enzimas

Published: October 25, 2014
doi:

Summary

Here we describe biochemical assays that can be used to characterize ATP-dependent chromatin remodeling enzymes for their abilities to 1) catalyze ATP-dependent nucleosome sliding, 2) engage with nucleosome substrates, and 3) hydrolyze ATP in a nucleosome- or DNA-dependent manner.

Abstract

Members of the SNF2 family of ATPases often function as components of multi-subunit chromatin remodeling complexes that regulate nucleosome dynamics and DNA accessibility by catalyzing ATP-dependent nucleosome remodeling. Biochemically dissecting the contributions of individual subunits of such complexes to the multi-step ATP-dependent chromatin remodeling reaction requires the use of assays that monitor the production of reaction products and measure the formation of reaction intermediates. This JOVE protocol describes assays that allow one to measure the biochemical activities of chromatin remodeling complexes or subcomplexes containing various combinations of subunits. Chromatin remodeling is measured using an ATP-dependent nucleosome sliding assay, which monitors the movement of a nucleosome on a DNA molecule using an electrophoretic mobility shift assay (EMSA)-based method. Nucleosome binding activity is measured by monitoring the formation of remodeling complex-bound mononucleosomes using a similar EMSA-based method, and DNA- or nucleosome-dependent ATPase activity is assayed using thin layer chromatography (TLC) to measure the rate of conversion of ATP to ADP and phosphate in the presence of either DNA or nucleosomes. Using these assays, one can examine the functions of subunits of a chromatin remodeling complex by comparing the activities of the complete complex to those lacking one or more subunits. The human INO80 chromatin remodeling complex is used as an example; however, the methods described here can be adapted to the study of other chromatin remodeling complexes.

Introduction

SnF2 complexos de remodelação da cromatina família incluem um SnF2-como centro ATPase subunidade 1,2. Alguns ATPases função SnF2-como enzimas individuais de subunidade, enquanto que outros funcionam como a subunidade catalítica de grandes complexos de multi-subunidades. Elucidar os mecanismos moleculares pelos quais cada uma das subunidades da cromatina complexos de remodelação contribuir para as suas actividades requer a capacidade de realizar ensaios bioquímicos que dissecam o processo de remodelação.

ATP-dependente remodelação nucleossoma pelo complexo INO80 humano e outras enzimas remodelação da cromatina pode ser concebido como um processo multi-etapas que começa com a ligação da enzima à remodelação nucleossomas, seguido por activação do seu ADN e / ou nucleossoma-ATPase dependente, translocação da enzima na remodelação ADN nucleossomal, e eventual reposicionamento de nucleossomas 1,2. Compreender os detalhes moleculares do dependente de ATP processo de remodelação da cromatina requires dissecção da reacção remodelação nos seus passos individuais e definição das contribuições das subunidades individuais do complexo de remodelação da cromatina para cada passo da reacção. Tais análises exigem a capacidade de analisar remodelação nucleosome e outras atividades utilizando substratos moleculares definidos in vitro.

Em um protocolo JOVE anterior, descrevemos os procedimentos utilizados para gerar complexos de remodelação da cromatina INO80 e subcomplexos com composições de subunidades definidas 3. Aqui, apresentamos três ensaios bioquímicos que permitem a análise quantitativa da ligação, DNA- e nucleosome ativado ATPase, e as atividades de remodelação nucleossomos associados com tais complexos nucleosome.

Protocol

1. ATP-dependentes nucleossoma Remodelação Ensaios Para medir as actividades de ATP-dependente nucleossoma remodelação, imunopurificada INO80 ou subcomplexos INO80 são incubados com ATP e um substrato mononucleosomal, que contém um único nucleossoma posicionado numa extremidade de um fragmento de ADN de 216 pb, 32 P-marcado. Os produtos da reacção são então sujeitos a electroforese em géis de poli-acrilamida nativo. Para gerar o, '601' fragmento de A…

Representative Results

As figuras mostram os resultados representativos de testes bioquímicos usados ​​para caracterizar as actividades, incluindo INO80 nucleossoma deslizante (Figura 1) e de ligação (Figura 2) e DNA- ensaios ou ensaios de ATPase dependente de nucleossoma (Figura 3). A experiência apresentada na Figura 1 compara a capacidade dos complexos INO80 intactas purificado através de FLAG-Ies2 ou FLAG-INO80E e de INO80 subcomplexo…

Discussion

Para garantir que a remodelação nucleosome e atividades ATPase observamos em ensaios dependem da atividade catalítica de complexos INO80, e não sobre a contaminação de remodelação e / ou enzimas ATPase, nós nucleosome rotineiramente ensaio remodelação e atividade ATPase de versões cataliticamente inativos de complexos INO80, purificado em paralelo com o tipo selvagem INO80 utilizando o mesmo procedimento. Uma reacção de controlo negativo a que falta o ATP também deve ser realizada quando se examina a acti…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Work in the authors’ laboratory is supported by a grant from the National Institute of General Medical Sciences (GM41628) and by a grant to the Stowers Institute for Medical Research from the Helen Nelson Medical Research Fund at the Greater Kansas City Community Foundation.

Materials

Name of Reagent/Material Company Catalog Number Comments
Protease Inhibitor Cocktail Sigma P8340
10x PCR reaction buffer  Roche Applied Science  11435094001
Roche Taq DNA Polymerase Roche Applied Science  11435094001
NucAway Nuclease-free Spin Columns  Ambion Cat. # AM10070
ultrapure ATP  USB/Affymetrix 77241 25 UM
bovine serum albumin  Sigma A9418 
N,N,N´,N´-tetramethylethylenediamine (TEMED) Thermo Scientific 17919 Fisher Scientific
40% Acrylamide/Bis 37.5:1 Amresco 0254-500ML
Sonicated salmon sperm DNAs  GE Healthcare 27-4565-01
10% ammonium persulfate (APS) Thermo Scientific 17874
benzonase  Novagen Cat. No. 70664
[α-32P] ATP (3000 Ci/mmol) PerkinElmer BLU003H250UC
dCTP, [α-32P]- 6000Ci/mmol PerkinElmer BLU013Z250UC
Equipment Company
PCR thermal cycler PTC 200 MJ Research PTC 200
Hoefer vertical electrophoresis unit Hoefer SE600X-15-1.5
lubricated 1.5ml microcentrifuge tubes  Costar 3207
Storage Phosphor Screen  Molecular Dynamics 63-0034-79
3MM filter paper Whatman  28458-005 VWR
Typhoon PhosphorImager  GE Healthcare 8600
ImageQuant software GE Healthcare ver2003.02
TLC Glass Plates, PEI-Cellulose F Millipore 5725-7
Immobilon-FL Transfer Membrane 7 x 8.4 Millipore IPFL07810
General purpose survey meter with end-window or pancake GM (Geiger-Mueller) probe Biodex Model 14C

References

  1. Clapier, C. R., Cairns, B. R. The biology of chromatin remodeling complexes. Annual Review of Biochemistry. 78, 273-304 (2009).
  2. Narlikar, G. J., Sundaramoorthy, R., Owen-Hughes, T. Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell. 154 (3), 490-503 (2013).
  3. Chen, L., Ooi, S. K., Conaway, J. W., Conaway, R. C. Generation and purification of human INO80 chromatin remodeling complexes and subcomplexes. , (2013).
  4. Lowary, P. T., Widom, J. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J. Mol. Biol. 276 (1), (1006).
  5. Owen-Hughes, T., et al. Analysis of nucleosome disruption by ATP-driven chromatin remodeling complexes. Methods Mol. Biol. 119, 319-331 (1999).
  6. Udugama, M., Sabri, A., Bartholomew, B. The INO80 ATP-dependent chromatin remodeling complex is a nucleosome spacing factor. Mol. Cell Biol. 31 (4), 662-673 (2011).
  7. Jin, J., et al. A mammalian chromatin remodeling complex with similarities to the yeast INO80 complex. Journal of Biological Chemistry. 280 (50), 41207-41212 (1074).
  8. Chen, L., et al. Subunit organization of the human INO80 chromatin remodeling complex: an evolutionarily conserved core complex catalyzes ATP-dependent nucleosome remodeling. Journal of Biological Chemistry. 286 (13), 11283-11289 (2011).
  9. Hamiche, A., Sandaltzopoulos, R., Gdula, D. A., Wu, C. ATP-dependent histone octamer sliding mediated by the chromatin remodeling complex NURF. Cell. 97 (7), 833-842 (1999).
  10. Polach, K. J., Widom, J. Restriction enzymes as probes of nucleosome stability and dynamics. Methods Enzymol. 304, 278-298 (1999).
  11. Anderson, J. D., Thastrom, A., Widom, J. Spontaneous access of proteins to buried nucleosomal DNA target sites occurs via a mechanism that is distinct from nucleosome translocation, Mol.Cell Biol. 22 (20), 7147-7157 (2002).
  12. Saha, A., Wittmeyer, J., Cairns, B. R. Chromatin remodeling through directional DNA translocation from an internal nucleosomal site. Nature Structural and Molecular Biology. 12 (9), 747-755 (2005).
  13. Gottschalk, A. J., et al. Poly(ADP-ribosyl)ation directs recruitment and activation of an ATP-dependent chromatin remodeler, Proc.Natl.Acad.Sci.U.S.A. 106 (33), 13770-13774 (2009).
  14. Clapier, C. R., Cairns, B. R. Regulation of ISWI involves inhibitory modules antagonized by nucleosomal epitopes. Nature. 492 (7428), 280-284 (2012).
  15. Brune, M., Hunter, J. L., Corrie, J. E. T., Direct Webb, M. R. Real-Time Measurement of Rapid Inorganic Phosphate Release Using a Novel Fluorescent Probe and Its Application to Actomyosin Subfragment 1 ATPase, Biochemistry. 33 (27), 8262-8271 (1994).
  16. Luk, E., et al. Stepwise histone replacement by SWR1 requires dual activation with histone H2A.Z and canonical nucleosome. Cell. 143 (5), 725-736 (2010).
check_url/51721?article_type=t

Play Video

Cite This Article
Chen, L., Ooi, S., Conaway, J. W., Conaway, R. C. Biochemical Assays for Analyzing Activities of ATP-dependent Chromatin Remodeling Enzymes. J. Vis. Exp. (92), e51721, doi:10.3791/51721 (2014).

View Video