Summary

Utilización de microescala silicio voladizos para evaluar la función contráctil celular<em> In Vitro</em

Published: October 03, 2014
doi:

Summary

Este protocolo describe el uso de palancas de silicio microescala como superficies de cultivo flexibles para la medición de la contractilidad de las células musculares in vitro. La contracción celular hace que la flexión en voladizo, que se puede medir, grabada, y se convierte en lecturas de fuerza, proporcionando un sistema no invasivo y escalable para la medición de la función contráctil in vitro.

Abstract

El desarrollo de ensayos in vitro más predictivos y biológicamente relevantes se basa en el avance de los sistemas de cultivo de células versátiles que facilitan la evaluación funcional de las células sembradas. Para ello, la tecnología voladizo microescala ofrece una plataforma con la que para medir la funcionalidad contráctil de una gama de tipos celulares, incluyendo esquelético, cardiaco, y las células de músculo liso, a través de la evaluación de la contracción inducida por sustrato flexión. Aplicación de las matrices multiplexadas en voladizo proporciona los medios para desarrollar protocolos de moderado a alto rendimiento para la evaluación de la eficacia del fármaco y la toxicidad, fenotipo de la enfermedad y la progresión, así como neuromusculares y otras interacciones célula-célula. Este manuscrito proporciona los detalles para la fabricación de matrices voladizo fiables para este fin, y los métodos necesarios para con éxito células de cultivo en estas superficies. Una descripción más detallada se proporciona en los pasos necesarios para realizar anal funcionalanalysis de tipos de células contráctiles mantuvo en tales matrices usando una novela láser y sistema de foto-detector. Los datos representativos proporcionados destaca la precisión y la naturaleza reproducible de análisis de la función contráctil posible utilizar este sistema, así como la amplia gama de estudios a los que tal tecnología se puede aplicar. Amplia adopción exitosa de este sistema podría proporcionar a los investigadores con los medios para llevar a cabo estudios funcionales rápidas y de bajo costo in vitro, lo que lleva a predicciones más exactas de rendimiento de tejidos, desarrollo de la enfermedad y la respuesta al nuevo tratamiento terapéutico.

Introduction

The in vitro culture of muscle cells from both human and rodent sources has been possible for decades1,2. However, while standard coverslip preparations are useful for biochemical assessment, they do not facilitate analysis of the cell’s primary functional output (contractility), and therefore are of somewhat limited value as a means to assess cellular maturation and performance. In order to maximize the amount of data obtainable from such in vitro cultures, it is necessary to advance the development of systems capable of housing such cells in configurations that permit the real-time assessment of their functional performance. The establishment of a multitude of three dimensional muscle models has made some progress toward fulfilling this need, and such systems have been used in a number of publications as a means to assess the contractile capacity of cultured muscle cells in vitro3-5. While such systems are invaluable for tissue modeling and reconstruction studies, they are limited in their applicability for studies of single cell responses. In such cases where single fiber studies are necessary, complex and labor intensive ex vivo methodologies remain the only option6-10. Furthermore, current movement toward the development of complex, multi-organ platforms for drug development and screening protocols requires the establishment of systems which are non-invasive, easily scalable and which integrate readily with supporting cells and tissue models11.

Microscale cantilevers offer a simple method for assessing the functional contractile capacity of single cells/small populations of cells12,13. The technique is based on modified Atomic Force Microscopy (AFM) technology14, and uses a laser and photo-detector system to measure microscale cantilever deflection in response to cultured myotube contractile activity. Modified Stoney’s equations are then used to calculate stress in the myotube, and the force exerted by the myotube in order to generate the observed substrate deflection15. A scanning program has been written which enables simultaneous assessment of multiplexed cantilever arrays, offering potential moderate to high through-put applications for drug toxicity/efficacy studies15,16. Such technology may prove invaluable in the development of functional, pre-clinical assays for predicting drug efficacy in vivo. Furthermore, fabrication of cantilever chips in silicon does not impede post analysis processing of cells for standard biomolecular assays such as immunostaining, western blotting and PCR.

This manuscript provides detailed instructions on the fabrication and preparation of microscale silicon cantilevers, the hardware and software set-up, and the operating guidelines for assessing the functionality of contractile cells cultured on these chips. Standard cell culture techniques can be implemented for plating and maintenance of cells on these surfaces, hence any contractile cell type for which reliable culture parameters exist should be able to integrate with this device with ease. The relatively simple 2D culture parameters utilized in this system makes integration of other cell models or addition of cell types that can interact with muscle (such as innervating neurons) straight-forward, greatly increasing the applicability of this model in the development of more complex functional in vitro assays and multi-organ models of mammalian systems.

Protocol

1. Cantilever viruta Fabrication Detalles ilustrados de los pasos de fabricación descritos se proporcionan en la Figura 1. Coloque las obleas de silicio sobre aislante (SOI) en un horno y hornear a 125 ° C durante 20 minutos para deshidratar ellos. Depositar una gruesa capa de óxido de silicio 1,5 m sobre la capa de mango de la oblea SOI deshidratado usando un Plasma Enhanced Chemical Vapor Deposition (PECVD) de la herramienta. Coloque las t…

Representative Results

Cultivo con éxito de células contráctiles en voladizos es un procedimiento relativamente sencillo, utilizando técnicas estándar de cultivo de células (Figura 5). El porcentaje de los voladizos soportan células contratantes variará dependiendo del tipo de célula que se examina y técnica de cultivo específica empleada. El uso de células embrionarias de rata primarios derivados de las extremidades posteriores, la actividad contráctil se detectó el 12% de los voladizos examinadas (n = 4). Aná…

Discussion

Los pasos críticos en el análisis de voladizos microescala para la evidencia de la contracción celular son la colocación del chip en voladizo dentro de la platina del microscopio, y la posterior alineación del láser y foto-detector con la punta de los voladizos de las esquinas de la matriz. Si esto no se realiza con precisión, entonces el software no será capaz de extrapolar las posiciones de los voladizos restantes en la matriz, que puede conducir a la acumulación de falsos negativos durante la recogida de dat…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Esta investigación fue financiada por el Instituto Nacional de Salud de subvención números R01NS050452 y R01EB009429. La fabricación de los chips en voladizo se realizó externamente por los colaboradores en el Centro de nanofabricación situado en la Universidad de Cornell. Todos los equipos utilizados en el proceso de fabricación en voladizo se encuentra en esta instalación. Un agradecimiento especial a Mandy Esch y Jean-Matthieu Prot por su colaboración en voladizo microfabricación. Vídeo de animación de la funcionalidad voladizo fue generada por Charles Hughes, Alex y Eric Zelenin Imperiale desde el Laboratorio de Realidad sintética en la UCF.

Materials

Name of material/ equipment Company Catalog number Comments/ Description
Primary rat muscle growth medium
Neurobasal medium Life Technologies 21103-049  N/A
B27 (50x) Life Technologies 17504044 1x
Glutamax (100x) Life Technologies 35050061 1x
G5 supplement Life Technologies 17503-012  1x
Glial-Derived Neurotrophic Factor Cell sciences CRG400B 20 ng/ ml
Brain-Derived Neurotrophic Factor Cell sciences CRB600B 20 ng/ ml
Ciliary Neurotrophic Factor Cell sciences CRC400A 40 ng/ ml
Neurotrophin-3 Cell sciences CRN500B 20 ng/ ml
Neurotrophin-4 Cell sciences CRN501B 20 ng/ ml
Acidic Fibroblast Growth Factor Life Technologies 13241-013  25 ng/ ml
Vascular Endothelial Growth Factor Life Technologies P2654 20 ng/ ml
Cardiotrophin-1 Cell sciences CRC700B 20 ng/ ml
Heparin Sulphate Sigma D9809  100 ng/ ml
Leukemia Inhibitory Factor Sigma L5158  20 ng/ ml
Vitronectin Sigma V0132 100 ng/ ml
Primary rat muscle differentiation medium
NB Activ 4 Brain Bits LLC NB4-500 N/A
Equipment
Class 2 red diode laser Newport N/A
Photo-detector Noah Industries N/A
Model 2100 Pulse stimulator A-M systems N/A
Multiclamp 700B Digitizer Axon Instruments N/A
Patch clamp microscope and stage Olympus N/A
Delta T4 culture dish controller Bioptechs N/A
Axoscope software Molecular Devices N/A
LabVIEW software National Instruments N/A
37oC, 5% CO2 incubator NAPCO N/A
Class 2 microbiological flow hood Labconco N/A
Pipettes and tips Eppendorf N/A

References

  1. Bischoff, R. Enzymatic liberation of myogenic cells from adult rat muscle. Anat. Rec. 180, 645-661 (1974).
  2. Yasin, R., et al. A quantitative technique for growing human adult skeletal muscle in culture starting from mononucleated cells. J. Neurol. Sci. 32, 347-360 (1977).
  3. Dennis, R. G., Kosnik, P. E., 2nd, Excitability and isometric contractile properties of mammalian skeletal muscle constructs engineered in vitro. In Vitro Cell Dev. Biol. Anim. 36, 327-335 (2000).
  4. Khodabukus, A., Baar, K. Defined electrical stimulation emphasizing excitability for the development and testing of engineered skeletal muscle. Tissue Eng Part C Methods. 18, 349-357 (2012).
  5. Langelaan, M. L. P., et al. Advanced maturation by electrical stimulation: Differences in response between C2C12 and primary muscle progenitor cells. Journal of tissue engineering and regenerative medicine. 5, 529-539 (2011).
  6. Stephenson, G. M., O’Callaghan, A., Stephenson, D. G. Single-fiber study of contractile and biochemical properties of skeletal muscles in streptozotocin-induced diabetic rats. Diabetes. 43, 622-628 (1994).
  7. Harber, M., Trappe, S. Single muscle fiber contractile properties of young competitive distance runners. Journal of applied physiology (Bethesda, Md: 1985). 105, 629-636 (2008).
  8. Hvid, L. G., et al. Four days of muscle disuse impairs single fiber contractile function in young and old healthy men. Experimental gerontology. 48, 154-161 (2013).
  9. Edman, K. A. Contractile performance of striated muscle. Advances in experimental medicine and biology. 682, 7-40 (2010).
  10. Krivickas, L. S., Walsh, R., Amato, A. A. Single muscle fiber contractile properties in adults with muscular dystrophy treated with MYO-029. Muscle Nerve. 39, 3-9 (2009).
  11. Sung, J. H., et al. Microfabricated mammalian organ systems and their integration into models of whole animals and humans. Lab on a chip. 13, 1201-1212 (2013).
  12. Wilson, K., Molnar, P., Hickman, J. J. Integration of functional myotubes with a Bio-MEMS device for non-invasive interrogation. Lab on a chip. 7, 920-922 (2007).
  13. Wilson, K., Das, M., Wahl, K. J., Colton, R. J., Hickman, J. Measurement of contractile stress generated by cultured rat muscle on silicon cantilevers for toxin detection and muscle performance enhancement. PLoS ONE. 5, (2010).
  14. Binnig, G., Quate, C. F., Gerber, C. Atomic Force Microscope. Physical Review Letters. 56, 930-933 (1986).
  15. Pirozzi, K. L., Long, C. J., McAleer, C. W., Smith, A. S., Hickman, J. J. Correlation of embryonic skeletal muscle myotube physical characteristics with contractile force generation on an atomic force microscope-based bio-microelectromechanical systems device. Applied physics letters. 103, 83108 (2013).
  16. Smith, A., Long, C., Pirozzi, K., Hickman, J. A functional system for high-content screening of neuromuscular junctions in vitro. Technology. 1, 37-48 (2013).
  17. Stenger, D. A., et al. Coplanar molecular assemblies of amino- and perfluorinated alkylsilanes: characterization and geometric definition of mammalian cell adhesion and growth. Journal of the American Chemical Society. 114, 8435-8442 (1992).
  18. Das, M., Rumsey, J. W., Bhargava, N., Stancescu, M., Hickman, J. J. A defined long-term in vitro tissue engineered model of neuromuscular junctions. Biomaterials. 31, 4880-4888 (2010).
  19. Rumsey, J. W., Das, M., Bhalkikar, A., Stancescu, M., Hickman, J. J. Tissue engineering the mechanosensory circuit of the stretch reflex arc: Sensory neuron innervation of intrafusal muscle fibers. Biomaterials. 31, 8218-8227 (2010).
  20. Das, M., Rumsey, J. W., Bhargava, N., Stancescu, M., Hickman, J. J. Skeletal muscle tissue engineering: A maturation model promoting long-term survival of myotubes, structural development of the excitation-contraction coupling apparatus and neonatal myosin heavy chain expression. Biomaterials. 30, 5392-5402 (2009).
  21. Das, M., et al. Developing a novel serum-free cell culture model of skeletal muscle differentiation by systematically studying the role of different growth factors in myotube formation. In Vitro Cell Dev Biol Anim. 45, 378-387 (2009).
  22. Stenger, D. A., Pike, C. J., Hickman, J. J., Cotman, C. W. Surface determinants of neuronal survival and growth on self-assembled monolayers in culture. Brain research. 630, 136-147 (1993).
  23. Hickman, J. J., et al. Rational pattern design for in vitro cellular networks using surface photochemistry. Journal of Vacuum Scienc., & Technology A: Vacuum, Surfaces, and Films. 12, 607-616 (1994).
  24. Das, M., Molnar, P., Devaraj, H., Poeta, M., Hickman, J. J. Electrophysiological and morphological characterization of rat embryonic motor neurons in a defined system. Biotechnology progress. 19, 1756-1761 (2003).
  25. Rumsey, J. W., et al. Node of Ranvier formation on motor neurons in vitro. Biomaterials. 30, 3567-3572 (2009).
  26. Murugan, R., Molnar, P., Rao, K. P., Hickman, J. J. Biomaterial Surface patterning of self assembled monolayers for controlling neuronal cell behavior. International journal of biomedical engineering and technology. 2, 104-134 (2009).
  27. Guo, X., Johe, K., Molnar, P., Davis, H., Hickman, J. Characterization of a human fetal spinal cord stem cell line, NSI-566RSC, and its induction to functional motoneurons. Journal of Tissue Engineering and Regenerative Medicine. 4, 181-193 (2010).
  28. Varghese, K., et al. A new target for amyloid beta toxicity validated by standard and high-throughput electrophysiology. PLoS ONE. 5, e8643 (2010).
  29. Natarajan, A., et al. Patterned cardiomyocytes on microelectrode arrays as a functional, high information content drug screening platform. Biomaterials. 32, 4267-4274 (2011).
  30. Davis, H., et al. Rat Cortical Oligodendrocyte-Embryonic Motoneuron Co-Culture: An Axon-Oligodendrocyte Interaction Model. Journal of biomaterials and tissue. 2, 206-214 (2012).
  31. Natarajan, A., DeMarse, T., Molnar, P., Hickman, J. Engineered In Vitro Feed-Forward Networks. J Biotechnol Biomater. 3, 2 (2013).
check_url/51866?article_type=t

Play Video

Cite This Article
Smith, A. S., Long, C. J., McAleer, C., Bobbitt, N., Srinivasan, B., Hickman, J. J. Utilization of Microscale Silicon Cantilevers to Assess Cellular Contractile Function In Vitro. J. Vis. Exp. (92), e51866, doi:10.3791/51866 (2014).

View Video