Summary

Vurdering af virksomhedens rentabilitet for Human Fat Injektion i nøgne mus med Micro-Computed Tomography

Published: January 07, 2015
doi:

Summary

Fat grafting is an essential technique for reconstructing soft tissue deficits. However, it remains an unpredictable procedure characterized by variable graft survival. Our goal was to devise a mouse model that utilizes a novel imaging method to compare volume retention between differing techniques of fat graft preparation and delivery.

Abstract

Lipotransfer er et afgørende redskab i kirurgens armamentarium til behandling af bløddele underskud på hele kroppen. Fedt er den ideelle blødt væv fyldstof, som det er let tilgængelige, let opnås, billig, og i sagens natur biokompatible. 1 Men på trods af sin spirende popularitet, er fedt podning hæmmet af uforudsigelige resultater og variable transplantatoverlevelse, med offentliggjorte frafald spænder overalt fra 10 -80%. 1-3

For at lette undersøgelser af fedt podning har vi derfor udviklet en dyremodel, der giver mulighed for real-time analyse af injiceret fedt volumen tilbageholdelse. Kort fortalt er et lille snit foretages i hovedbunden af ​​en CD-1 nøgne mus og 200-400 pi af forarbejdet lipoaspirate placeres over kraniet. Hovedbunden er valgt som modtager stedet på grund af sin mangel på native subkutant fedt, og på grund af den fremragende baggrund kontrast billede af hovedskallen, som hjælper ianalyseprocessen. Micro-computertomografi (mikro-CT) anvendes til at scanne transplantatet ved baseline og hver anden uge derefter. De CT-billeder er rekonstrueret, og en billeddannende software bruges til at kvantificere graft mængder.

Traditionelt teknikker vurdere fedt graft volumen har nødvendiggjort euthanizing undersøgelsen dyr til at give bare en enkelt vurdering af graft vægt og volumen af fysisk måling ex vivo. Biokemiske og histologiske sammenligninger har ligeledes krævet undersøgelsen dyr, der skal aflives. Denne beskrevne imaging teknik har den fordel at visualisere og objektivt kvantificere volumen ved forskellige tidspunkter efter den første podning uden at ofre undersøgelsen dyr. Teknikken er begrænset af størrelsen af ​​implantatet i stand til at blive injiceret som større transplantater risiko hud og fedt nekrose. Denne metode har nytte for alle studier, der evaluerer fedt graft levedygtighed og fastholdelse volumen. Det er især velegnet til providing en visuel repræsentation af fedt transplantater og efter ændringer i volumen over tid.

Introduction

Soft tissue defects arise from a variety of causes including trauma, tumor resection, aging, and congenital anomaly. They can be debilitating for patients, and represent one of the most common, yet challenging problems for reconstructive surgeons. Many methods exist for addressing soft tissue deficiencies, such as local and free flaps, collagen injections, and synthetic fillers.4-8 However, since its first documented use by Neuber in 18931, autologous fat transfer remains the gold standard for the repair of soft tissue deficits, as it is ready available, easy and safe to harvest, and naturally compatible.1,2

Despite these advantages, autologous fat grafts suffer from unpredictable and variable survival, with retention rates ranging anywhere from 10-80% over time.1-3,9 In order to account for this expected loss of volume and symmetry, surgeons must often overcorrect when filling soft tissue defects, or perform multiple follow-up procedures.

Poorly vascularized graft beds are partly to blame for this tissue resorption. Additionally, the lack of a benchmark analysis method to compare graft survival may also contribute to the inconsistency in reported results. A precise method for measuring graft volume would reduce measurement error when evaluating retention rates. This in turn would help researchers more accurately identify the causative factors that affect graft survival. Although many laboratory animal models have facilitated both quantitative and qualitative assessment of human fat graft survival, most are based on histological and biochemical means and require sacrificing the study animal to yield a single measurement.3,10-12 Little has been reported on the use of imaging techniques to enumerate fat graft volume retention in vivo.

A handful of clinical studies have shown more effective measurement techniques using imaging. Magnetic Resonance Imaging (MRI) was employed by Hörl et al. to measure fat graft survival13, and CT was utilized by Har-Shai et al. and Fontdevila et al. in their analyses of volume retention after grafting in patients who suffered from HIV.14,15 Employing three-dimensional (3D) imaging software, Meier et al. measured volume retention in humans after autologous fat grafting by comparing images from the preoperative and postoperative period.16

Yet, a standardized method employing imaging to measure fat graft survival is lacking in basic science research. A high resolution imaging approach for assessing the volumes of fat grafts would allow not only for accurate and reproducible volume measurements, but also for repeated measurements allowing visualization of the evolution of fat graft survival in a real time fashion.

Protocol

BEMÆRK: Eksperimentelle protokoller og patientens samtykke formularer for at opnå fedt blev gennemgået og godkendt af Stanford University Institutional Review Board (Protokol # 2188). Alle dyreforsøg blev godkendt af Stanford administrative panel for Laboratory Animal Care (Aplac) i henhold til protokol # 9999. Alle forsøg blev udført med streng overholdelse dyr sikkerhed og humane retningslinjer pleje. 1. Fat Høst Brug af Coleman procedure 17-19, få human fedtv…

Representative Results

Fat transplantater faldt gradvist i volumen i løbet af studiet, hvilket resulterer i 62,2% gennemsnitlig overlevelse ved uge 8. (figur 4A) 24 Ved afslutningen af uge 8 scanningen blev hver fedt transplantat ekstraheret i et enkelt stykke. En Wilcoxan rang sum test blev anvendt til at sammenligne forskellen mellem volumen målinger af fedt transplantater fremstillet ved enten micro-CT eller beregnes ud fra fysisk masse. Ingen signifikant forskel blev konstateret mellem disse to metoder (tosid…

Discussion

Indtil dette punkt har de fleste forskere påberåbt sig ikke-billeddannende modaliteter til at kvantificere den langsigtede overlevelse af fedt transplantater, men disse metoder kræver det offer af undersøgelsen af dyr og giver kun en enkelt måling. 3,10-12 Vores undersøgelse repræsenterer en forbedret analysemetode, der tillader objektiv, real-time kvantificering af fedt transplantatoverlevelse i en musemodel.

Kritisk i denne proces er at sikre, at tilstrækkeligt immunkomp…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Denne undersøgelse blev støttet af Oak Foundation, Hagey Laboratorium for Pediatric regenerativ medicin, og National Institute of Health, Grants NIHR21DE019274, NIHR01DE019434, NIHR01DE021683 og NIHU01HL099776 til MTLDCW blev støttet af ACS Franklin H. Martin Faculty Research Fellowship, den Hagey Laboratorium for Pediatric regenerativ medicin, og Stanford University Child Health Research Institute Fakultet Scholar Award. Micro-CT blev udført på Stanford Center for Innovation i In Vivo Imaging.

Materials

Reagents and Materials Manufacturer
SAL lipoaspirate N/A
Centrifuge Beckman Coulter, Inc., Pasadena, CA
50 ml conical tubes BD Biosciences, San Jose, CA
CD-1 nude mice (Crl:CD1-Foxn1nu) Charles River Laboratories, Inc., Wilmington, MA
Isoflurane Henry Schein, Dublin, OH
2.5% Betadine Purdue Pharma, L.P., Stamford, CT
70% Ethanol solution  Gold Shield, Hayward, CA
1cc luer-lock syringe BD Biosciences, San Jose, CA
14 gauge cannula Shippert Medical, Centennial, CO
Forceps Fine Science Tools, Heidelberg, Germany
Tenotomy scissors Fine Science Tools, Heidelberg, Germany
6-0 nylon suture Ethicon, Blue Ash, OH
Phosphate buffered saline Gibco, Carlsbad, CA
micro-CT scanner  Siemens Healthcare, Pleasanton, CA
Phantom  TriFoil Imaging, Northridge, CA
Imaging analysis software IRW, Siemens Healthcare, Pleasanton, CA
Scale  Mettler-Toledo International, Inc., Columbus, OH

References

  1. Gir, P., et al. Fat grafting: evidence-based review on autologous fat harvesting, processing, reinjection, and storage. Plast Reconstr Surg. 130 (1), 249-258 (2012).
  2. Kaufman, M. R., et al. Autologous fat transfer national consensus survey: trends in techniques for harvest, preparation, and application, and perception of short- and long-term results. Plast Reconstr Surg. 119 (1), 323-331 (2007).
  3. Smith, P., et al. Autologous human fat grafting: effect of harvesting and preparation techniques on adipocyte graft survival. Plast Reconstr Surg. 117 (6), 1836-1844 (2006).
  4. Eppley, B. L., Dadvand, B. Injectable soft-tissue fillers: clinical overview. Plast Reconstr Surg. 118 (4), 98e-106e (2006).
  5. Yarborough, J. M. The treatment of soft tissue defects with injectable collagen. Am J Med Sci. 290 (1), 28-31 (1985).
  6. Baumann, D. P., Butler, C. E. Soft tissue coverage in abdominal wall reconstruction. Surg Clin North Am. 93 (5), 1199-1209 (2013).
  7. Tukiainen, E. Chest wall reconstruction after oncological resections. Scand J Surg. 102 (1), 9-13 (2013).
  8. Zan, T., et al. Surgical treatment of facial soft-tissue deformities in postburn patients: a proposed classification based on a retrospective study. Plast Reconstr Surg. 132 (6), 1001e-1014e (2013).
  9. Bucky, L. P., Percec, I. The science of autologous fat grafting: views on current and future approaches to neoadipogenesis. Aesthet Surg J. 28 (3), 313-321 (2008).
  10. Lee, J. H., et al. The effect of pressure and shear on autologous fat grafting. Plast Reconstr Surg. 131 (5), 1125-1136 (2013).
  11. Kirkham, J. C., et al. The impact of liposuction cannula size on adipocyte viability. Ann Plast Surg. 69 (4), 479-481 (2012).
  12. Medina, M. A., et al. 3rd et al. Polymer therapy: a novel treatment to improve fat graft viability. Plast Reconstr Surg. 127 (6), 2270-2282 (2011).
  13. Horl, H. W., Feller, A. M., Biemer, E. Technique for liposuction fat reimplantation and long-term volume evaluation by magnetic resonance imaging. Ann Plast Surg. 26 (3), 248-258 (1991).
  14. Har-Shai, Y., Lindenbaum, E. S., Gamliel-Lazarovich, A., Beach, D., Hirshowitz, B. An integrated approach for increasing the survival of autologous fat grafts in the treatment of contour defects. Plast Reconstr Surg. 104 (4), 945-954 (1999).
  15. Fontdevila, J., et al. Assessing the long-term viability of facial fat grafts: an objective measure using computed tomography. Aesthet Surg J. 28 (4), 380-386 (2008).
  16. Meier, J. D., Glasgold, R. A., Glasgold, M. J. Autologous fat grafting: long-term evidence of its efficacy in midfacial rejuvenation. Arch Facial Plast Surg. 11 (1), 24-28 (2009).
  17. Coleman, S. R. Structural fat grafts: the ideal filler. Clin Plast Surg. 28 (1), 111-119 (2001).
  18. Coleman, S. R. Structural fat grafting: more than a permanent filler. Plast Reconstr Surg. 118 (3 Suppl), 108S-120S (2006).
  19. Pu, L. L., Coleman, S. R., Cui, X., Ferguson, R. E., Vasconez, H. C. Autologous fat grafts harvested and refined by the Coleman technique: a comparative study. Plast Reconstr Surg. 122 (3), 932-937 (2008).
  20. Matsumoto, D., et al. Cell-assisted lipotransfer: supportive use of human adipose-derived cells for soft tissue augmentation with lipoinjection. Tissue Eng. 12 (12), 3375-3382 (2006).
  21. Yoshimura, K., Suga, H., Eto, H. Adipose-derived stem/progenitor cells: roles in adipose tissue remodeling and potential use for soft tissue augmentation. Regen Med. 4 (2), 265-273 (2009).
  22. Zuk, P. A., et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7 (2), 211-228 (2001).
  23. Habte, F., et al. Impact of a multiple mice holder on quantitation of high-throughput MicroPET imaging with and without Ct attenuation correction. Mol Imaging Biol. 15 (5), 569-575 (2013).
  24. Chung, M. T., et al. Micro-computed tomography evaluation of human fat grafts in nude mice. Tissue Eng Part C Methods. 19 (3), 227-232 (2013).
  25. Thanik, V. D., et al. A murine model for studying diffusely injected human fat. Plast Reconstr Surg. 124 (1), 74-81 (2009).

Play Video

Cite This Article
Atashroo, D. A., Paik, K. J., Chung, M. T., McArdle, A., Senarath-Yapa, K., Zielins, E. R., Tevlin, R., Duldulao, C. R., Walmsley, G. G., Wearda, T., Marecic, O., Longaker, M. T., Wan, D. C. Assessment of Viability of Human Fat Injection into Nude Mice with Micro-Computed Tomography. J. Vis. Exp. (95), e52217, doi:10.3791/52217 (2015).

View Video