Summary

Imaging 3-D y Análisis de neuronas infectadas<em> En Vivo</em> Con<em> Toxoplasma gondii</em

Published: December 09, 2014
doi:

Summary

El uso de este protocolo, hemos sido capaces de imagen de 160 micras de espesor secciones de cerebro de ratones infectados con el parásito Toxoplasma gondii, que permite la visualización y el análisis de la relación espacial entre el parásito enquistamiento y la neurona infectada.

Abstract

Toxoplasma gondii es un parásito intracelular obligado con una amplia gama de huéspedes, incluidos los seres humanos y roedores. En los seres humanos y roedores, Toxoplasma establece una infección persistente de por vida en el cerebro. Mientras que esta infección cerebral es asintomática en la mayoría de las personas inmunocompetentes, en el desarrollo del feto o personas inmunodeprimidas, como el síndrome de inmunodeficiencia adquirida (SIDA) pacientes, esta predilección por y persistencia en el cerebro puede conducir a la enfermedad neurológica devastadora. Por lo tanto, es evidente que la interacción de cerebros Toxoplasma es crítico para la enfermedad sintomática producida por Toxoplasma, sin embargo, tienen poco entendimiento de la interacción celular o molecular entre células del sistema nervioso central (CNS) y el parásito. En el modelo de ratón de la toxoplasmosis del SNC se ha conocido por más de 30 años que las neuronas son las células en las que el parásito persiste, pero hay poca información disponible sobre la queparte de la neurona es generalmente infecta (soma, dendritas, axón) y si esta relación celular cambia entre cepas. En parte, esta falta es secundaria a la dificultad de formación de imágenes y la visualización de las neuronas infectadas enteras de un animal. Estas imágenes se suelen requerir seccionamiento en serie y costuras de tejido fotografiado por microscopía electrónica o microscopía confocal después de inmunotinción. Mediante la combinación de varias técnicas, el método descrito aquí permite el uso de secciones gruesas (160 micras) para identificar y células de imagen completa que contienen quistes, lo que permite la visualización y el análisis de las neuronas individuales, crónicamente infectadas en tres dimensiones sin la necesidad de inmunotinción, microscopía electrónica o seccionamiento y la costura serie. Usando esta técnica, podemos comenzar a entender la relación celular entre el parásito y la neurona infectada.

Introduction

El objetivo general de este método es la obtención de alta resolución, las imágenes tridimensionales de las neuronas individuales que están infectadas por el parásito intracelular obligado Toxoplasma gondii.

Toxoplasma se considera a menudo uno de los parásitos más exitosos debido a su gran rango de huésped intermediario, que incluye seres humanos y roedores. En los seres humanos y roedores, después de la infección aguda por ingestión de alimentos o agua contaminados, Toxoplasma es capaz de provocar una infección persistente del SNC mediante la conversión de su forma de replicación rápida (taquizoíto) a su lenta replicante y encysting forma (la bradyzoite ). En individuos inmunocompetentes, se cree que esta infección latente CNS a ser relativamente asintomática, pero en individuos inmunocomprometidos, como los pacientes con SIDA o receptores de trasplantes, el recrudecimiento del parásito puede provocar encefalitis por toxoplasma 1,2 fatal. Además, estudios recientes hahan demostrado que la infección latente por Toxoplasma puede conducir a cambios de comportamiento en roedores 3,4, aunque el mecanismo sigue siendo desconocido.

Sorprendentemente, a pesar de estos datos destacan la importancia de la interacción CNS Toxoplasma, se sabe relativamente poco acerca de esta relación, sobre todo a nivel celular y molecular. La capacidad para estudiar los aspectos más simples de la interacción parásito-cerebro se ha visto obstaculizada en parte por las limitaciones tecnológicas. Por ejemplo, la mayoría del trabajo que demuestra que las neuronas son las células en las que los quistes persisten se ha hecho con la microscopía electrónica (EM) 5,6. Aunque EM da alta resolución, es mucho tiempo, mano de obra intensiva, y caro. Ensayos de inmunofluorescencia (IF) han sido recientemente utilizado en conjunción con la microscopía confocal para confirmar el trabajo realizado por EM 7. Si los análisis son técnicamente fácil de realizar y relativamente barato, pero el uso de estas técnicas para understand la relación espacial entre el quiste y la neurona infectado requiere la reconstrucción de serie, que es mucho tiempo, técnicamente difícil, y puede conducir a la pérdida de información valiosa. Por lo tanto, hemos desarrollado un método que se puede utilizar con el modelo de ratón de la toxoplasmosis CNS y nos permite la imagen de la totalidad de las neuronas infectadas sin EM o inmunohistoquímica (IHC). Mediante el desarrollo de esta técnica, podemos empezar a explorar la relación entre el celular de la célula infectada y el quiste de una manera relativamente rápida y económica.

El método que hemos desarrollado combina nuevas técnicas para la compensación óptica y de imagen secciones de cerebro de espesor por microscopía confocal 8 con un sistema que marca en las células in vivo que han sido inyectados con proteínas del parásito 9,10. En este sistema, se infectan ratones Cre-reportero que expresan una proteína fluorescente verde (GFP) sólo después de la recombinación Cre-11 mediada con Toxoplasma </em> Cepas que expresan una proteína fluorescente roja (RFP) y se inyectan la recombinasa Cre en las células huésped 9. Esta combinación nos permite cosechar el cerebro de ratón infectado después de establecida la infección del SNC, cortar secciones de cerebro de espesor, y rápidamente identificar las áreas pertinentes a la imagen mediante la búsqueda de la RFP + quistes. Es importante tener en cuenta que a medida que la expresión célula hospedadora de la GFP depende únicamente de la inyección de Cre por parásitos, y no en la infección, un número de las células GFP + no contienen parásitos 10. Como el objetivo de este protocolo es capaz de neuronas infectadas imagen enteros, la atención se centra sólo en las buenas prácticas agrarias + neuronas que contienen también un RFP + quiste, pero el protocolo también se puede usar para la imagen de la GFP + / RFP neuronas.

Una vez que el cerebro infectado se cosecha y se seccionó, las secciones se convierten transparente por compensación de glicerol. Regiones apropiadas de secciones se avistaron con microscopía confocal, almugido visualización sin precedentes de las células huésped infectadas y los parásitos enquistados en su totalidad. Aquí le ofrecemos un completo protocolo para la identificación, la compensación óptica y, a las neuronas de imágenes infectado.

Protocol

NOTA: Los ratones fueron criados y mantenidos en un ambiente controlado de temperatura y humedad con 12 hr invertido ciclos de luz / oscuridad con alimento y agua ad libitum en la Universidad de Arizona. Los experimentos se llevaron a cabo bajo las directrices y aprobación del Comité de Cuidado y Uso de Animales Institucional de la Universidad de Arizona. Se hicieron todos los esfuerzos para minimizar el sufrimiento. Los ratones Cre-reportero están en un C57BL / 6 de fondo 11 y están disponibles …

Representative Results

La Figura 7 incluye imágenes representativas de dos GFP + neuronas a partir de dos secciones diferentes 160 m de espesor, así como una medición representativa de la distancia desde quiste a célula-cuerpo para la Figura 7B. Cifras que contiene quiste-7 A y B ilustran que este nuevo protocolo permite la visualización de la neurona infectada en su totalidad. La Figura 7C muestra que con esta técnica de imagen, ahora es pos…

Discussion

Dado que los cambios celulares en las células huésped infectadas han sido vinculados a resultados de la enfermedad en infecciones con otros organismos intracelulares tales como el VIH, la rabia, y Chlamydia 18,19, hemos desarrollado una técnica que nos permitirá estudiar las interacciones íntimas que se producen entre el SNC sede de célula y Toxoplasma. El método aquí descrito logra este objetivo al permitir imágenes eficiente de las neuronas infectadas crónicamente. Antes del desarrollo de…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Damos las gracias a todo el laboratorio Koshy útil para los debates. Damos las gracias a Patty Jansma y la Universidad de Arizona Departamento de Neurociencia de consejos y ayuda con las imágenes. También agradecemos el laboratorio Porreca para el uso de su Vibratome. Esta investigación fue financiada por los Institutos Nacionales de Salud (NIH NS065116, AAK).

Materials

Name of Reagent/ Equipment Company Catalog Number Comments/Description
Vibratome Series 1000 Sectioning System Technical Products International, Inc. Other vibratomes are compatible
Glycerol Fisher Scientific BP229-1
Tween-20 Fisher Scientific BP337-500
Premium Slides Fisher Scientific 12-544-2
#1.5 Coverslips VWR 48393 251
Diamond Scriber VWR 52865-005
Zeiss LSM 510 Meta confocal microscope Zeiss LSM 510
Ketaject® Ketamine HCl Inj., USP 100mg/ml Western Medical Supply, Inc. 4165
AnaSed® Injection Xylazine 20mg/ml Lloyd Inc.
ZsGreen Mice Jackson Laboratories 7906 B6.Cg-Gt(ROSA)26Sortm6(CAG-ZsGreen1)Hze/J
Surgical equipment Thumb forceps; Fine scissors-angled to side, sharp-sharp; Sharp-sharp scissors; Kelly hemostats; Mayo scissors; Micro spatula.
Human Foreskin Fibroblasts (HFF) cells These are primary cells from human foreskins.  We make these in-house but they may be purchased from outside vendors.
Dulbecco's High Glucose Modified Eagles Medium (DMEM) HyClone SH30081.01
Penicillin Streptomycin Solution, 100X Corning 30-002-Cl
200mM L-alanyl-L-glutamine Corning 25-015-Cl
25cm2 Canted neck flask Fisher Scientific 1012639
Phosphate-Buffered Saline, 1X Without Calcium and Magnesium VWR 45000-446
Phosphate-Buffered Saline, 10X, USP Sterile Ultra Pure Grade amresco K813-500ml
Fetal Bovine Serum Gibco 26140-079
Bright-Line Hemocytometer Sigma-aldrich Z359629-1EA
Mouse Brain Slicer Matrix Zivic Instruments BSMAS005-1
Sodium Chloride Fisher Scientific BP358-1
Heparin sodium salt from porcine intestinal mucosa Sigma-aldrich H3393-100KU
Paraformaldehyde Fisher Scientific O4042-500
20ml Disposable Scintillation Vials Fisher Scientific FS74500-20
Alcohol, Ethyl, 95%, 190 Proof In-house 17212945 This product is purchased from an in-house stockroom.  Other companies are compatible.
Imaris Software Bitplane
Clear nail polish Other brands are compatible
10ml Syringe with Luer-Lok VWR BD309604 Other syringes are compatible
Three-way Stopcock Any brand is compatible
Hypodermic needle Any brand is compatible – used to pin down mouse.
Cell Scraper Any brand is compatible
25G x 12" Tubing, Safety Blood Collection Set, with Luer Adapter Greiner Bio-One 450099 Other brands are compatible

References

  1. Luft, B., Remington, J. Toxoplasmic encephalitis in AIDS. Clin Infect Dis. 15 (2), 211-222 (1992).
  2. Hill, D., Dubey, J. P. Toxoplasma gondii: transmission, diagnosis and prevention. Clin Microbiol Infect. 8 (10), 634-640 (2002).
  3. Ingram, W. M., Goodrich, L. M., Robey, E., Eisen, M. B. Mice infected with low-virulence strains of Toxoplasma gondii lose their innate aversion to cat urine, even after extensive parasite clearance. PloS one. 8 (9), 75246 (2013).
  4. Evans, A. K., Strassmann, P. S., Lee, I. -. P., Sapolsky, R. M. Patterns of Toxoplasma gondii cyst distribution in the forebrain associate with individual variation in predator odor avoidance and anxiety-related behavior in male Long-Evans rats. Brain Behav Immun. 37, 122-133 (2013).
  5. Ferguson, D. J., Hutchison, W. M. The host-parasite relationship of Toxoplasma gondii in the brains of chronically infected mice. Virchows Arch A Pathol Anat Histopathol. 411 (1), 39-43 (1987).
  6. Ferguson, D. J., Graham, D. I., Hutchison, W. M. Pathological changes in the brains of mice infected with Toxoplasma gondii: a histological, immunocytochemical and ultrastructural study. Int J Exp Pathol. 72 (4), 463-474 (1991).
  7. Melzer, T. C., Cranston, H. J., Weiss, L. M., Halonen, S. K. Host Cell Preference of Toxoplasma gondii Cysts in Murine Brain: A Confocal Study. J Neuroparasitology. , (2010).
  8. Selever, J., Kong, J. -. Q., Arenkiel, B. R. A rapid approach to high-resolution fluorescence imaging in semi-thick brain slices. J Vis Exp. (53), (2011).
  9. Koshy, A., Fouts, A., Lodoen, M., Alkan, O. Toxoplasma secreting Cre recombinase for analysis of host-parasite interactions. Nat Methods. 7 (4), 307-309 (2010).
  10. Koshy, A. a., Dietrich, H. K., et al. Toxoplasma co-opts host cells it does not invade. PLoS pathog. 8 (7), (2012).
  11. Madisen, L., Zwingman, T. a., et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci. 13 (1), 133-140 (2010).
  12. Caffaro, C. E., Koshy, A. s., Liu, L., Zeiner, G. M., Hirschberg, C. B., Boothroyd, J. C. A nucleotide sugar transporter involved in glycosylation of the Toxoplasma tissue cyst wall is required for efficient persistence of bradyzoites. PLoS pathog. 9 (5), (2013).
  13. Saeij, J. P. J., Boyle, J. P., Boothroyd, J. C. Differences among the three major strains of Toxoplasma gondii and their specific interactions with the infected host. Trends in parasitology. 21 (10), 476-481 (2005).
  14. Dubey, J. P., Lindsay, D. S., Speer, C. a Structures of Toxoplasma gondii tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts. Clin Microbiol Rev. 11 (2), 267-299 .
  15. Prandota, J. Possible Link Between Toxoplasma Gondii and the Anosmia Associated With Neurodegenerative Diseases. Am J Alzheimers Dis Other Demen. 29 (3), 205-214 (2014).
  16. Berenreiterová, M., Flegr, J., Kuběna, A., Němec, P. The distribution of Toxoplasma gondii cysts in the brain of a mouse with latent toxoplasmosis: implications for the behavioral manipulation hypothesis. PloS one. 6 (12), 28925 (2011).
  17. Ferguson, D. J., Hutchison, W. M. An ultrastructural study of the early development and tissue cyst formation of Toxoplasma gondii in the brains of mice. Parasitol Res. 73 (6), 483-491 (1987).
  18. De Chiara, G., Marcocci, M. E., et al. Infectious agents and neurodegeneration. Mol Neurobiol. 46 (3), 614-638 (2012).
  19. Scott, C. a., Rossiter, J. P., Andrew, R. D., Jackson, A. C. Structural abnormalities in neurons are sufficient to explain the clinical disease and fatal outcome of experimental rabies in yellow fluorescent protein-expressing transgenic mice. J Virol. 82 (1), 513-521 (2008).
  20. Ke, M. -. T., Fujimoto, S., Imai, T. SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Nat Neurosci. 16 (8), 1154-1161 (2013).
check_url/52237?article_type=t

Play Video

Cite This Article
Cabral, C. M., Koshy, A. A. 3-D Imaging and Analysis of Neurons Infected In Vivo with Toxoplasma gondii. J. Vis. Exp. (94), e52237, doi:10.3791/52237 (2014).

View Video