Summary

인간과 마우스의 뇌실 주위 조직의 측면 심실 및 조직 학적 특성의 3D 모델링

Published: May 19, 2015
doi:

Summary

Using MRI scans (human), 3D imaging software, and immunohistological analysis, we document changes to the brain’s lateral ventricles. Longitudinal 3D mapping of lateral ventricle volume changes and characterization of periventricular cellular changes that occur in the human brain due to aging or disease are then modeled in mice.

Abstract

The ventricular system carries and circulates cerebral spinal fluid (CSF) and facilitates clearance of solutes and toxins from the brain. The functional units of the ventricles are ciliated epithelial cells termed ependymal cells, which line the ventricles and through ciliary action are capable of generating laminar flow of CSF at the ventricle surface. This monolayer of ependymal cells also provides barrier and filtration functions that promote exchange between brain interstitial fluids (ISF) and circulating CSF. Biochemical changes in the brain are thereby reflected in the composition of the CSF and destruction of the ependyma can disrupt the delicate balance of CSF and ISF exchange. In humans there is a strong correlation between lateral ventricle expansion and aging. Age-associated ventriculomegaly can occur even in the absence of dementia or obstruction of CSF flow. The exact cause and progression of ventriculomegaly is often unknown; however, enlarged ventricles can show regional and, often, extensive loss of ependymal cell coverage with ventricle surface astrogliosis and associated periventricular edema replacing the functional ependymal cell monolayer. Using MRI scans together with postmortem human brain tissue, we describe how to prepare, image and compile 3D renderings of lateral ventricle volumes, calculate lateral ventricle volumes, and characterize periventricular tissue through immunohistochemical analysis of en face lateral ventricle wall tissue preparations. Corresponding analyses of mouse brain tissue are also presented supporting the use of mouse models as a means to evaluate changes to the lateral ventricles and periventricular tissue found in human aging and disease. Together, these protocols allow investigations into the cause and effect of ventriculomegaly and highlight techniques to study ventricular system health and its important barrier and filtration functions within the brain.

Introduction

뇌실막 세포 단층 선 뇌척수액 (CSF) 및 격자 간 유체 (ISF) 1-3 간의 양방향 장벽 및 전송 기능을 제공하는 뇌의 심실 시스템. 이러한 기능은 뇌가 독성이없는 생리적 균형 2,3에서 유지하는 데 도움이됩니다. 부상 또는 질병을 통해이 안감의 일부의 인간 손실에서 다른 상피 라이닝에서 발견 회생 교체에 결과에 표시되지 않습니다; 오히려 뇌실막 셀 커버리지의 손실은 심실 표면에서 뇌실막 세포의 무 결함 영역을 커버하는 성상 세포의 메쉬 작업과 뇌실 주위 백질 as​​trogliosis 될 것으로 보인다. 중요한 CSF / ISF 교환 및 통관 메커니즘에 심각한 영향이 상피 층 1,2,4-7의 손실이 발생할 것으로 예상된다.

인간의 노화의 일반적인 기능은 측면 심실 (뇌실) 및 observ 등 관련 뇌실 주위 부종을 확대MRI 및 유체 감쇠 반전 회복 자기 공명 영상 (MRI / FLAIR) 8-14에 의해 에드. 뇌실과 심실 라이닝의 세포 조직 사이의 관계를 조사하기 위해, 사후 인간의 자기 공명 영상 시퀀스는 측면 뇌실 뇌실 주위 조직의 조직 학적 제제와 일치했다. 뇌실 가지 경우에서, 신경교 증의 실질적인 영역은 측면 뇌실 벽을 따라 뇌실막 세포 커버리지를 교체했다. 뇌실 확장이 자기 공명 영상 기반 볼륨 분석에 의해 감지되지 않은 경우, 뇌실막 세포 안감은 그대로이고 신경교 증은 심실 라이닝 (6)에 따라 검출되지 않았다. 이 조합 방식은 부분의 wholemount 준비 또는 전체 측면 뇌실 벽과 심실 볼륨 (6)의 3D 모델링을 사용하여 측면 뇌실 내벽의 세포 무결성의 첫 번째 포괄적 인 문서 자세히 변경을 나타냅니다. 여러 질환 (알츠하이머 병, 정신 분열증)과 부상 (외상성 뇌 손상)초기 신경 병리학 적 기능으로 뇌실을 보여줍니다. 이에 뇌실막 세포 라이닝의 지역의 삭박 정상 뇌실막 세포 기능을 방해하고 CSF / ISF 유체 및 용질 교환 사이의 항상성 균형을 손상 할 것으로 예상된다. 따라서, 기본 또는 이웃 뇌 구조에 심실 시스템, 그것의 세포 구성하고, 결과에 대한 변경 사항에 대해 더욱 철저한 검사는 궁극적으로 뇌실의 확대와 관련된 신경 병리학에 대한 자세한 내용을 공개하기 시작합니다.

함께 학적 조직 샘플에 대응하는 액세스가 제한된 조영 데이터의 부족, 특히 길이 데이터 시퀀스에서, 인간의 뇌 병리 분석 어렵게 만든다. 인간의 노화 또는 질병에있는 모델링 표현형은 종종 마우스 모델을 달성 할 수있는 동물 모델은 인간의 질병 개시 및 진행에 대한 질문을 탐구하기 위해 최선의 방법 중 하나가. 의 여러 연구건강한 젊은 마우스는 좌우 심실 벽의 cytoarchitecture 및 기본 줄기 세포 틈새 4,7-15을 설명했다. 이들 연구는 -6,15- 노화 통해 좌심실 벽의 3D 모델링 및 세포 분석을 포함하도록 확장되어왔다. 마우스는 비교적 강력한 subventicular 영역 (SVZ) -6,15- 라이닝 그대로 뇌실막 세포에 세포 틈새 바로 아래 줄기 표시 오히려 뇌실 주위 백질 신경교 증이나 뇌실 어느 쪽도, 세 생쥐에서 관찰된다. 따라서, 타격 종 특이 차이 -6,15- 노화 과정에서 일반적인 관리 및 뇌실 라이닝의 무결성에 모두 존재한다. 따라서, 인간에서 발견 조건을 심문하는 것이 가장 사용 마우스로 두 종 사이의 차이가 특징으로 적절 어떤 모델링 패러다임에서 고려 될 필요가있다. 여기, 우리는 모두 인간과 M의 측면 심실에 길이 변화와 관련된 뇌실 주위 조직을 평가하는 절차를 제시여러개. 우리의 절차는 세포의 조직과 구조 모두의 특성을 3D 렌더링 및 마우스와 인간의 심실 모두의 용적 측정, 및 뇌실 주위 조직의 전체 마운트 준비의 면역 조직 화학 분석의 사용을 포함한다. 이러한 절차는 함께 심실 시스템의 변화와 연관된 뇌실 조직을 특성화하는 수단을 제공한다.

Protocol

참고 : 동물 절차 IACUC 코네티컷 대학의 승인을 NIH의 지침을 준수 하였다. 인간의 조직 및 데이터 분석 및 절차를 준수했고, 코네티컷 IRB 대학의 승인을 NIH 가이드 라인을 준수합니다. 1. 마우스 : 뇌실의 뇌실 주위 세포 무결성 및 3D 모델링 분석 마우스 뇌실 벽 전체 마운트 1.1) 준비 면역 조직 화학 (IHC)에 대한 마우스 측면 뇌실 전체 마운트 준비는 …

Representative Results

면역 염색 50 μm의 관상 섹션과 3D 재구성 (그림 3)에 따라 마우스 측면 심실의 윤곽 추적은 볼륨 데이터가 질병이나 부상에 대한 모델 시스템으로 마우스를 사용하여 다른 실험 패러다임에서 수집 할 수 있습니다. 이 절차에 긴급 뇌실 벽이 서로 접착 영역을 배제한다. 심실의 영역 subsegmenting 각 영역 (도 3C)에 대해 다른 색을 지정함으로써, 인접한 절편을 준수 할 수 있고, …

Discussion

우리는 도구와 쥐 및 인간에서 뇌의 심실 시스템의 무결성을 평가할 수있다 프로토콜을 제시한다. 이러한 도구는, 그러나, 또한, 14,21,22 또는 노화 과정에서 손상, 질환으로 인한 변화를 겪는 다른 뇌 구조 또는 기관 시스템에 적용될 수있다. 전략의 단면과 길이 MRI 시퀀스들의 정렬이 특정 영역 또는 관심있는 구조의 3 차원 볼륨 표현을 생성 할 수있는 소프트웨어의 인출 이점을 ?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

An NINDS Grant NS05033 (JCC) supported this work. The University of Connecticut RAC, SURF and OUR programs provided additional support.

Materials

Name of the Materal/Equipment Company Catalog Number Comments/Description
Phosphate buffered saline (PBS) Life Technologies 21600-069
Paraformaldehyde (PFA) Electron Microscopy Sciences 19210 Use at 4% in PBS, 4 °C
Normal Horse Serum Life Technologies 16050 10% in PBS-TX (v/v)
Normal Goat Serum Life Technologies 16210 10% in PBS-TX (v/v)
Triton X-100 (TX) Sigma-Aldrich T8787 0.1% in PBS (v/v)
Vibratome Leica VT1000S
Fluorescence Microscope Zeiss Imager.M2
Camera Hamamatsu ORCA R2
Microscope Stage Controller Ludl Electronic Products MAC 6000
Stereology software MBF Bioscience Stereo Investigator 11
Stereology software ImageJ/NIH NIH freeware
3D Reconstruction software MBF Bioscience Neurolucida Explorer
Confocal Microscope Leica TCS SP2
MRI Software
Freesurfer https://surfer.nmr.mgh.harvard.edu/fswiki/DownloadAndInstall Segmentation and Volume
ITK-Snap http://www.itksnap.org/pmwiki/pmwiki.php Segmentation and Volume
Multi-image Analysis GUI (Mango) http://ric.uthscsa.edu/mango/ Longitudinal overlay
Whole Mount Equipment
22.5° microsurgical straight stab knife Fisher Scientific NC9854830
parafilm
wax bottom dissecting dish 
pins
fine forceps
aquapolymount
Dissecting Microscope Leica MZ95
Whole Mount Antibodies
mouse anti-b-catenin BD Bioschiences, San Jose, CA, USA 1:250
goat anti-GFAP Santa Cruz Biotechnology 1:250
rabbit anti-AQP4 (aquaporin-4)  Sigma-Aldrich 1:400
Coronal Antibodies
Anti-S100β antibody Sigma-Aldrich 1:500
4’,6-diamidino-2-phenylindole (DAPI) Life Technologies D-1306 10 µg/mL in PBS

References

  1. Del Bigio, M. R. Ependymal cells: biology and pathology. Acta Neuropathol. 119, 55-73 (2010).
  2. Johanson, C., et al. The distributional nexus of choroid plexus to cerebrospinal fluid, ependyma and brain: toxicologic/pathologic phenomena, periventricular destabilization, and lesion spread. Toxicol Pathol. 39, 186-212 (2011).
  3. Roales-Bujan, R., et al. Astrocytes acquire morphological and functional characteristics of ependymal cells following disruption of ependyma in hydrocephalus. Acta Neuropathologica. 124, 531-546 (2012).
  4. Cserr, H. F. Physiology of the choroid plexus. Physiol Rev. 51, 273-311 (1971).
  5. Iliff, J. J., et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Science Translational Medicine. 4, 147ra111 (2012).
  6. Shook, B. A., et al. Ventriculomegaly associated with ependymal gliosis and declines in barrier integrity in the aging human and mouse brain. Aging Cell. , (2013).
  7. Xie, L., et al. Sleep drives metabolite clearance from the adult brain. Science. 342, 373-377 (2013).
  8. Fazekas, F., et al. Pathologic correlates of incidental MRI white matter signal hyperintensities. Neurology. 43, 1683-1689 (1993).
  9. Meier-Ruge, W., Ulrich, J., Bruhlmann, M., Meier, E. Age-related white matter atrophy in the human brain. Ann N Y Acad Sci. 673, 260-269 (1992).
  10. Resnick, S. M., Pham, D. L., Kraut, M. A., Zonderman, A. B., Davatzikos, C. Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain. The Journal Of Neuroscience : The Official Journal Of The Society For Neuroscience. 23, 3295-3301 (2003).
  11. Sener, R. N. Callosal changes in obstructive hydrocephalus: observations with FLAIR imaging, and diffusion MRI. Comput Med Imaging Graph. 26, 333-337 (2002).
  12. Sze, G., et al. Foci of MRI signal (pseudo lesions) anterior to the frontal horns: histologic correlations of a normal finding. AJR Am J Roentgenol. 147, 331-337 (1986).
  13. Tisell, M., et al. Shunt surgery in patients with hydrocephalus and white matter changes. Journal of Neurosurgery. 114, 1432-1438 (2011).
  14. Valdes Hernandez Mdel, C., et al. Automatic segmentation of brain white matter and white matter lesions in normal aging: comparison of five multispectral techniques. Magn Reson Imaging. 30, 222-229 (2012).
  15. Shook, B. A., Manz, D. H., Peters, J. J., Kang, S., Conover, J. C. Spatiotemporal changes to the subventricular zone stem cell pool through aging. The Journal of Neuroscience : The Official Journal Of The Society For Neuroscience. 32, 6947-6956 (2012).
  16. Mirzadeh, Z., Merkle, F. T., Soriano-Navarro, M., Garcia-Verdugo, J. M., Alvarez-Buylla, A. Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell. 3, 265-278 (2008).
  17. Mirzadeh, Z., Doetsch, F., Sawamoto, K., Wichterle, H., Alvarez-Buylla, A. The subventricular zone en-face: wholemount staining and ependymal flow. J Vis Exp. , (2010).
  18. Luo, J., Daniels, S. B., Lennington, J. B., Notti, R. Q., Conover, J. C. The aging neurogenic subventricular zone. Aging Cell. 5, 139-152 (2006).
  19. Luo, J., Shook, B. A., Daniels, S. B., Conover, J. C. Subventricular zone-mediated ependyma repair in the adult mammalian brain. J Neurosci. 28, 3804-3813 (2008).
  20. Marcus, D. S., Fotenos, A. F., Csernansky, J. G., Morris, J. C., Buckner, R. L. Open access series of imaging studies: longitudinal MRI data in nondemented and demented older adults. J Cogn Neurosci. 22, 2677-2684 (2010).
  21. Giorgio, A., De Stefano, N. Clinical use of brain volumetry. J Magn Reson Imaging. 37, 1-14 (2013).
  22. Caspers, S., et al. Studying variability in human brain aging in a population-based German cohort-rationale and design of 1000BRAINS. Front Aging Neurosci. 6, 149 (2014).
  23. Keuken, M. C., et al. Ultra-high 7T MRI of structural age-related changes of the subthalamic nucleus. The Journal of neuroscience : the official journal of the Society for Neuroscience. 33, 4896-4900 (2013).
  24. Marti-Bonmati, L., Sopena, R., Bartumeus, P., Sopena, P. Multimodality imaging techniques. Contrast Media Mol Imaging. 5, 180-189 (2010).
  25. Bergmann, O., et al. The age of olfactory bulb neurons in humans. Neuron. 74, 634-639 (2012).
  26. Sanai, N., et al. Corridors of migrating neurons in the human brain and their decline during infancy. Nature. 478, 382-386 (2011).
  27. Wang, C., et al. Identification and characterization of neuroblasts in the subventricular zone and rostral migratory stream of the adult human brain. Cell Res. 21, 1534-1550 (2011).
  28. Carmen Gomez-Roldan, D. e. l., M, , et al. Neuroblast proliferation on the surface of the adult rat striatal wall after focal ependymal loss by intracerebroventricular injection of neuraminidase. The Journal of Comparative Neurology. 507, 1571-1587 (2008).
check_url/52328?article_type=t

Play Video

Cite This Article
Acabchuk, R. L., Sun, Y., Wolferz, Jr., R., Eastman, M. B., Lennington, J. B., Shook, B. A., Wu, Q., Conover, J. C. 3D Modeling of the Lateral Ventricles and Histological Characterization of Periventricular Tissue in Humans and Mouse. J. Vis. Exp. (99), e52328, doi:10.3791/52328 (2015).

View Video