Summary

녹화 패치 클램프 기술을 사용하여 어두운 적응 마우스 망막 슬라이스 준비에 신경 세포의 시냅스 응답 빛-유발

Published: February 11, 2015
doi:

Summary

We will demonstrate how to prepare retinal slices from the mouse eye and record light responses in retinal neurons. The entire procedure is conducted in dark-adapted conditions.

Abstract

망막은 시각 체계의 관문이다. 영상 신호 처리 메커니즘을 이해하기 위해 망막 신경 네트워크 기능을 조사. 네트워크의 망막 신경 세포는 다양한 아형 포함한다. 양극성 세포, 신경절 세포 및 무 축삭 세포의 10 개 이상의 아형은 형태 학적 연구에 의해 확인되었다. 망막 뉴런의 여러 아형 모션 및 컬러 같은 시각적 신호의 뚜렷한 기능을 인코딩 및 다중 신경 경로를 형성하는 것으로 생각된다. 그러나, 영상 신호 처리의 각 신경 세포의 기능적 역할은 완전히 이해되지 않습니다. 패치 클램프 방법이 근본적인 문제를 해결하는 데 유용합니다. 여기에, 프로토콜을 제공한다 어두운 적응 조건에서 패치 클램프 녹음을 사용하여 마우스 망막 신경 세포에서 빛 유발 시냅스 응답을 기록합니다. 마우스 눈 O / N 암순응이며, 망막 슬라이스 제제는 적외선 조명을 이용하여 시청자 암실에서 해부. 적외선하지 않습니다마우스의 광 수용체를 활성화하고, 따라서 그들의 빛 응답 성을 유지합니다. 패치 클램프 망막 뉴런의 광 유발 된 응답을 기록하는데 사용된다. 형광 염료는 신경 학적 아형의 특성을 기록하는 동안 분사된다. 이 절차는 마우스 망막에 각각의 신경 세포의 생리 학적 기능을 결정하기 위해 우리가 할 수 있습니다.

Introduction

The retina is one of the unique parts of the nervous system. As an accessible part of the brain, its synaptic architecture has been well characterized. In addition, the functions of this neural network can be examined with a physiological stimulus: light. If the retinal tissue is isolated in a dark room with appropriate procedures, neurons in the tissue will respond to light. This preparation has been used to study visual signal processing and elucidate various synaptic mechanisms and neural network functions, as well as disease mechanisms.

Light responses in retinal neurons have been recorded for decades. Early studies used sharp electrodes to make intracellular recordings from mudpuppy retinal neurons1. In the 1980s, the patch clamp technique was invented2, and soon became a popular method among vision researchers3,4. Single cell recordings from lower vertebrates, including mudpuppy and fish retinal neurons, were popular methods that contributed to the elucidation of visual signal processing mechanisms5,6.

After genetic mutation techniques were developed, the mouse retina became a more popular model for vision researchers7-9. The mammalian retina is more attractive than that of lower vertebrates because it is evolutionarily closer to the human retina, and there is an opportunity to use disease models. However, mouse retinal cells are small and fragile10, and making retinal preparations and conducting patch clamp recordings in a dark room is challenging. As technology has improved, diverse approaches have become available to study visual signaling mechanisms such as imaging studies11 and the electroretinogram (ERG)12. Nevertheless, single cell recording with the patch clamp method is still important because it is highly temporally and spatially sensitive compared to other methods. Therefore, we have continuously conducted patch clamp recordings and improved our methods to investigate visual signal processing in mouse retinal slice preparations13-15.

In this video tutorial, the protocols are presented with important tips. Good recordings can only be achieved with good preparation. Practicing animal dissection and building a sturdy patch clamp rig will enable most researchers to achieve successful recordings.

Protocol

윤리 문 : 동물 과목을 포함하는 절차는 웨인 주립 대학의 기관 동물 관리 및 사용위원회 (IACUC)에 의해 승인되었다. 실험 솔루션 1. 준비 실제 실험 전에 해부 솔루션을 일일 1 주를 준비합니다. 때문에 낮은 온도 (16)에서 강력한 완충 능력 망막 박리에 대한 HEPES 완충 용액을 사용합니다. (mm 단위)으로는 다음과 모든 화학 물질을 혼합 : 115의 NaCl, 2.5의 KCl, 2.5 <sub…

Representative Results

대표적인 제제는 슬라이스 슬라이스 제제 평면에서 신경절 세포를 나타내는 감광체, 직선 위치에있다.도 1에 도시하지 않고, 여과지로부터 박리된다. 슬라이스가 기울어 진 경우, 제제의 일부만 어려운 패치 클램프 적절한 셀을 식별 할 수있는 초점이다. 레코딩을위한, 일반적으로 빛나는 표면을 갖는 좋은 소마, 심지어 둥근 형상 및 가시적 어두운 플라크를 선택하는 것이 중요하다….

Discussion

Good recordings can only be achieved with good retinal preparations and well-designed patch clamp setups. Although all the steps described above are important, the discussion highlights some critical steps both for the dissection and recordings.

For dissection, two things are especially important: cooling and oxygenation. After enucleating the eye, quickly remove the front part of the eye in a dissecting chamber with oxygen-bubbled, cooled dissecting solution, and pour cold solution into the …

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by NIH R01 EY020533, WSU Startup Fund, and RPB grants.

Materials

Name of Material/ Equipment Company Catalog Number Comments/Description
mice (28-60 days old, male) Jackson laboratory C57BL/6J strain
Ames' medium powder Sigma A1420 excellent
Stereo microscope Nikon SMZ745 excellent
dissecting tool_forceps Dumont #4, #5, #55 excellent
dissecting tool_scissors Roboz RS-5605 excellent
dissecting tool_surgery knife Surgistar 7514 excellent
razor blade (for chopper) EMS 71970 excellent
chopper handmade
infrared viewer Night Owl Optics NOBG1 It shows bright view.  Focusing small objects is an issue.
infrared pocket scopes B.E. Meyers OWL Gen 3 NV pocketscope excellent view
puller Sutter P-1000 excellent.  Make consistent size pipettes.
dark box Pelican dark box excellent
patch clamp system Scientifica slice scope 2000 Excellent setup.  Most key components are included in one package.  Micromanipulators are excellent.
amplifier Molecular Devices multiclamp 700B Excellent and easy control.
acquiring software Molecular Devices pClamp software Excellent and easy control.
light source (LED) Cool LED pE-2 4 channel system Excellent
CCD camera Q-imaging Retiga 2000 Excellent
Faraday cage handmade

References

  1. Werblin, F. S., Dowling, J. E. Organization of the retina of the mudpuppy, Necturus maculosus II. Intracellular recording. J Neurophysiol. 32 (3), 339-355 (1969).
  2. Sakmann, B., Neher, E. Patch clamp techniques for studying ionic channels in excitable membranes. Annu Rev Physiol. 46, 455-472 (1984).
  3. Lukasiewicz, P., Werblin, F. A slowly inactivating potassium current truncates spike activity in ganglion cells of the tiger salamander retina. J Neurosci. 8 (12), 4470-4481 (1988).
  4. Kaneko, A., Tachibana, M. Effects of L-glutamate on the anomalous rectifier potassium current in horizontal cells of Carassius auratus retina. J Physiol. 358, 169-182 (1985).
  5. Kamermans, M., Werblin, F. GABA-mediated positive autofeedback loop controls horizontal cell kinetics in tiger salamander retina. J Neurosci. 12 (7), 2451-2463 (1992).
  6. Cook, P. B., McReynolds, J. S. Lateral inhibition in the inner retina is important for spatial tuning of ganglion cells. Nat Neurosci. 1 (8), 714-719 (1998).
  7. Pang, J. J., Gao, F., Wu , J. S. Light-evoked current responses in rod bipolar cells, cone depolarizing bipolar cells and AII amacrine cells in dark-adapted mouse retina. J Physiol. 558 (Pt. 558 (Pt 3), 897-912 (2004).
  8. Euler, T., Masland , R. H. Light-evoked responses of bipolar cells in a mammalian retina). J Neurophysiol. 83 (4), 1817-1829 (2000).
  9. Berntson, A., Taylor , W. R. Response characteristics and receptive field widths of on-bipolar cells in the mouse retina. J Physiol. 524 Pt. 524 (Pt 3), 879-889 (2000).
  10. Sterling, P., Smith, R. G. Design for a binary synapse. Neuron. 41 (3), 313-315 (2004).
  11. Borghuis, B. G., Marvin, J. S., Looger, L. L., Demb, J. B. Two-photon imaging of nonlinear glutamate release dynamics at bipolar cell synapses in the mouse retina. J Neurosci. 33 (27), 10972-10985 (2013).
  12. Dowling, J. E., Sidman, R. L. Inherited retinal dystrophy in the rat. J Cell Biol. 14, 73-109 (1962).
  13. Eggers, E. D., Lukasiewicz, P. D. GABA(A), GABA(C) and glycine receptor-mediated inhibition differentially affects light-evoked signalling from mouse retinal rod bipolar cells. J Physiol. 572 (Pt 1), 215-225 (2006).
  14. Ichinose, T., Lukasiewicz, P. D. The mode of retinal presynaptic inhibition switches with light intensity). J Neurosci. 32 (13), 4360-4371 (2012).
  15. Ichinose, T., Fyk-Kolodziej, B., Cohn, J. Roles of ON cone bipolar cell subtypes in temporal coding in the mouse retina. J Neurosci. 34 (26), 8761-8771 (2014).
  16. Baicu, S. C., Taylor, M. J. Acid-base buffering in organ preservation solutions as a function of temperature: new parameters for comparing buffer capacity and efficiency. Cryobiology. 45 (1), 33-48 (2002).
  17. Ames, A., Nesbett, F. B. In vitro retina as an experimental model of the central nervous system. J Neurochem. 37 (4), 867-877 (1981).
  18. Haverkamp, S., et al. The primordial, blue-cone color system of the mouse retina. J Neurosci. 25 (22), 5438-5445 (2005).
  19. Wei, W., Elstrott, J., Feller, M. B. Two-photon targeted recording of GFP-expressing neurons for light responses and live-cell imaging in the mouse retina. Nat Protoc. 5 (7), 1347-1352 (2010).
  20. Farre, C. G., M Bruggemann, A., Fertig, N. Ion channel screening – automated patch clamp on the rise. Drug discovery today. Technologies. 5 (1), e1-e34 (2008).
check_url/52422?article_type=t

Play Video

Cite This Article
Hellmer, C. B., Ichinose, T. Recording Light-evoked Postsynaptic Responses in Neurons in Dark-adapted, Mouse Retinal Slice Preparations Using Patch Clamp Techniques. J. Vis. Exp. (96), e52422, doi:10.3791/52422 (2015).

View Video