Summary

准备和无气腹纳米结构的反应含能材料

Published: April 02, 2015
doi:

Summary

本协议描述的自保纳米结构的高能材料(镍+铝,钽+ C,钛+ C)使用短期高能球磨(高能球磨)技术的准备。它还描述研究的机械制造纳米复合材料的反应性的高速热成像方法。这些协议可以扩展到其它的反应性纳米结构的高能材料。

Abstract

高能球磨(高能球磨)是其中的粉末混合物放入球磨机从球经受高能碰撞一个球磨处理。除其他应用中,它是一种通用的技术,其允许有效制剂的气腹活性纳米结构材料具有高能量密度的单位体积(镍+以Al,Ta + C的Ti + C)。反应介质的结构转变,其中高能球磨过程中发生的,确定的生产充满活力的复合材料的反应机制。改变加工条件允许制造复合颗粒的研磨引起的微观结构中的微调。反过来,反应性, ,自燃温度,点火延迟时间,以及反应动力学,高能量密度的材料取决于其微观结构。铣削诱导的微结构的分析表明,的试剂之间新鲜无氧亲密高表面积接触形成我š负责它们的反应性的提高。这表现在降低点火温度和延迟时间,化学反应的速率增加,反应的有效活化能的整体下降。该协议提供了使用短期高能球磨法定制微结构反应性的纳米复合材料的制备方法的详细描述。它也描述了一种高速热成像技术来确定高能材料的点火/燃烧特性。该协议可以适于制备各种纳米结构的复合材料有活力和表征。

Introduction

经典高能材料, 即,炸药推进剂和烟火是一类材料,具有高含量的储存的化学能,可以在快速的放热反应1-5被释放的例如,通常通过组合燃料和氧化剂组成生成炸药一个分子。这些材料的能量密度非常高。例如,在分解三硝基甲苯(TNT)释放7.22千焦耳/厘米3,并且形成为每100克( 表1)气体的8.36摩尔的时间很短的时间。这些材料组成的微米级的有机和无机物质(燃料和氧化剂)的。

铝热剂系统,其中,反应取无机化合物之间发生, 即,还原性金属( 例如,Al)和氧化物(的Fe 2 O 3,CuO的,铋2 O 3),属于另一类型的高能材料。能量密度(15-21千焦耳/厘米3)这样的系统中的超过的TNT,然而气体产物的量(每100g 0.15-0.6摩尔)典型地比对爆炸物( 表1)少得多。另外,纳米thermites可能呈现极高速度的燃烧波的传播(> 1,000米/秒)2 ​​-5。

它最近显示6-12,若干气腹异质反应系统(镍+铝,钛+ C的Ti + B)形成金属间或者难熔化合物的也可以被认为是高能材料。这些系统的能量密度(千焦耳/厘米3)的比的TNT( 表1)的接近或更高。同时,在反应过程中不存在的气体的产品使得这种材料的优异候选者用于各种应用,包括合成的纳米材料,耐火材料和异种份的反应性粘接,气腹微发电机, 等等 11-17。然而,相对这些系统(900-3,000 K, 见表1)相比,thermites(〜1000 K)的atively高燃点温度阻碍了他们的应用程序。工程化纳米复合材料的制备中可以显著提高气腹异构系统12-14,17的点火与燃烧特性。

许多方法已被开发来制造工程改造高能纳米复合材料,如超声波混合18,19,自组装方法如图5所示 ,溶胶-凝胶20-22,气相沉积技术16,17,23,24,以及高能量的球磨(高能球磨)1,5。纳米粉末超声混合的缺点是厚(5-10纳米)氧化物壳上的金属纳米颗粒减小的能量密度,并降低反应混合物的燃烧性能。此外,燃料和氧化剂的分布是不均匀的,并且反应物之间的界面接触不是亲密。溶胶 – 凝胶的●自组装的策略是为编制具体的铝热剂纳米复合材料的发展。尽管是低成本的技术,这些战略都没有从绿色环保的角度来看。而且,大量的杂质被引入到制备复合材料。蒸镀或者磁控溅射用于制备反应性多层箔和芯 – 壳的高能材料。它提供了复合材料的无孔和良好定义的几何形状简化理论建模和提高精度。然而,这种技术是昂贵的并且难以扩大。此外,制备的层状纳米复合材料是不稳定的某些条件。

高能球磨(高能球磨)是一种环境友好,易于扩展的方法,使纳米结构复合材料精力充沛5,9 -14有效的制造。高能球磨便宜且可以与各种反应性材料的组合物(可以使用例如 ,在rmites,形成金属间化合物,碳化物,硼化物 )反应。

该协议通过使用短期高能球磨法为制备活性高能(镍+铝,钛+ C钽+ C)纳米复合材料与定制微结构的详细描述。它也描述了一种高速热成像技术来确定,为制造的​​高能材料的点火/燃烧特性。最后,它显示了使用场发射扫描电子显微镜(FESEM)配备了聚焦离子束(FIB)纳米复合材料的微观结构分析。该协议是对不同的精力充沛的纳米材料(无气和铝热剂系统),可以被用作高能量密度的来源或合成和先进的纳米材料的处理通过燃烧为基础的方法的制备方法的重要指南。

Protocol

1.高能球磨制备35克初始1:1的摩尔比Ni + Al混合物。在这种情况下,称量11.02克的Al和23.98克镍粉末。 使用不锈钢研磨罐为这个系统的高能球磨。确保该罐具有更高的硬度比所述粉末被添加,否则粉末会损坏罐子和污染也会产生。注意:典型罐子选择包括钢,氧化锆,或碳化钨。 使用5:1球:粉末(电荷比)为这个系统中, 即 ,175克10毫米钢球。确保球是由相同的材料构?…

Representative Results

为了制备纳米结构的复合材料有活力,希望的粉末组分的混合物(通常是微米尺寸)的预设的研磨条件下进行机械处理。处理时间(通常为几分钟)被精确地控制,以产生组成上均化的纳米复合材料的颗粒,但不允许在自立化学反应研磨期间启动。 图1和视频1表明,在复合颗粒增加几个数量级的反应物之间的接触表面面积相比,初始混合物中。高能?…

Discussion

该协议通过使用短期高能球磨法为制备活性高能(钛+ C的Ta + C的Ni + Al)的纳米复合材料与定制微结构的详细描述。的气腹异构混合物高能球磨涉及它们的处理在高速行星式球磨机,其中该混合物的颗粒进行机械冲击的力足以脆性组分的击穿( 例如石墨)和变形的塑料部件( 例如,铝,钛,钽,镍)。脆的反应物被研磨成较细的颗粒,并可能成为无定形的,而塑料的金属经受多种变?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This material is based upon work supported by the Department of Energy, National Nuclear Security Administration, under Award Number DE-NA0002377. Funding from the Defense Threat Reduction Agency (DTRA), Grant Number HDTRA1-10-1-0119. Counter-WMD basic research program, Dr. Suhithi M. Peiris, program director is gratefully acknowledged. This work was also supported by the Ministry of Education and Science and Education of the Russian Federation in the framework of Increase Competitiveness Program of NUST “MISIS” grant No. K2-2014-001.

Materials

Titanium Alfa Aesar 42624 Particle size: -325 mesh Purity, 99.5%
Graphite Alfa Aesar 46304 Particle size: 7-11 micron Purity, 99%
Nickel Alfa Aesar 10256 Particle size: 3-7 micron Purity, 99.9%
Aluminum Alfa Aesar 11067 Particle size: -325 mesh Purity, 99.5%
Tantalum Materion advanced chemicals T-2017 Particle size: 325 mesh Purity, 99.9%
Carbon lampblack Fisher scientific C198-500 Particle size: 0.1 micron Purity, 99.9%
Tungsten wire Mcmaster Carr n/a 0.032" diameter n/a
Planetary Ball Mill Retsch GmbH, Germany n/a n/a n/a
Uniaxial press Carver Hydraulic n/a n/a n/a
Sieve shaker Gilson performer n/a 5mm diameter n/a
Cylindrical stainless steel press die Action Machine n/a n/a n/a
Stainless steel sieves Mcmaster Carr Type 304 n/a n/a
High-speed thermal camera (SC6000) FLIR n/a n/a n/a
Helios NanoLab 600, Field Emission Scanning Electron Microscope (FESEM) Equipped by Focus Ion Beam (FIB) FEI n/a n/a n/a
Cylindrical reactor with a vacuum pomp Action Machine n/a n/a n/a
Autoslice and View (S&V) FEI n/a n/a n/a
Avizo Fire FEI n/a n/a n/a

References

  1. Fried, L. E., Manaa, M. R., Pagoria, P. F., Simpson, R. L. Design and Synthesis of Energetic Materials. Annual Review of Materials Research. 31, 291-321 (2001).
  2. Dlott, D. D. Thinking Big (and Small) about Energetic Materials. Materials Science and Technology. 22 (4), 463-473 (2006).
  3. Dreizin, E. L. Metal-Based Reactive Nanomaterials. Progress in Energy and Combustion Science. 35 (2), 141-167 (2009).
  4. Yetter, R. A., Risha, G. A., Son, S. F. Metal Particle Combustion and Nanotechnology. Proceedings of the Combustion Institute. 32 (2), 1819-1838 (2009).
  5. Zhou, X., Torabi, M., Lu, J., Shen, R., Zhang, Z. Nanostructured Energetic Composites: Synthesis, Ignition/Combustion Modeling, and Applications. ACS Applied Materials and Interfaces. 6 (5), 3058-3074 (2014).
  6. Mann, A. B., et al. Modeling and Characterizing the Propagation Velocity of Exothermic Reactions in Multilayer Foils. Journal of Applied Physics. 82 (3), 1178 (1997).
  7. Jayaraman, S., Mann, A. B., Reiss, M., Weihs, T. P., Knio, O. M. Numerical Study of the Effect of Heat Losses on Self-Propagating Reactions in Multilayer Foils. Combustion and Flame. 124 (1-2), 178-194 (2001).
  8. Rogachev, A. S. Exothermic Reaction Waves in Multilayer Nanofilms. Russian Chemical Reviews. 77 (1), 21-37 (2008).
  9. White, J. D. E., Reeves, R. V., Son, S. F., Mukasyan, A. S. Thermal Explosion in Al-Ni System: Influence of Mechanical Activation. The Journal of Physical Chemistry A. 113 (48), 13541-13547 (2009).
  10. Shteinberg, A. S., Lin, Y. -. C., Son, S. F., Mukasyan, A. S. Kinetics of High Temperature Reaction in Ni-Al System: Influence of Mechanical Activation. The Journal of Physical Chemistry A. 114 (20), 6111-6116 (2010).
  11. Manukyan, K. V., Lin, Y. L., Rouvimov, S., McGinn, P. J., Mukasyan, A. S. Microstructure-reactivity relationship of Ti reactive nanomaterials. Journal of Applied Physics. 113 (2), 024302 (2013).
  12. Mukasyan, A. S., Lin, Y. C., Rogachev, A. S., Moskovskikh, D. M. Direct Combustion Synthesis of Silicon Carbide Nanopowder from the Elements. Journal of the American Ceramic Society. 96 (1), 111-117 (2013).
  13. Lin, Y. C., Nepapushev, A. A., McGinn, P. J., Rogachev, A. S., Mukasyan, A. S. Combustion joining of carbon/carbon composites by a reactive mixture of titanium and mechanically activated nickel/aluminum powders. Ceramics International. 39 (7), 7499-7505 (2013).
  14. Manukyan, K. V., et al. Tailored Reactivity of Ni+AlNanocomposites: Microstructural Correlations. The Journal of Physical Chemistry C. 116 (39), 21027-21038 (2012).
  15. Qiu, X., Wang, J. Bonding Silicon Wafers with Reactive Multilayer Foils. Sensors and Actuators A. 141 (2), 476-481 (2008).
  16. Wang, J., et al. Joining of Stainless-Steel Specimens with Nanostructured Al/Ni Foils. Journal of Applied Physics. 95 (1), 248-256 (2004).
  17. Rogachev, A. S., Mukasyan, A. S. Combustion of Heterogeneous Nanostructural Systems (Review). Combustion, Explosion, and Shock Waves. (Engl. Transl). 46 (3), 243-266 (2010).
  18. Granier, J. J., Pantoya, M. L. Laser Ignition of Nanocomposite Thermites). Combustion and Flame. 138 (4), 373-383 (2004).
  19. Bockmon, B. S., Pantoya, M. L., Son, S. F., Asay, B. W., Mang, J. T. Combustion Velocities and Propagation Mechanisms of Metastable Interstitial Composites. Journal of Applied Physics. 98 (6), 064903-064907 (2005).
  20. Tillotson, T. M., et al. Nanostructured Energetic Materials Using Sol−Gel Methodologies. Journal of Non-Crystalline Solids. 285 (1-3), 338-345 (2001).
  21. Cervantes, O. G., Kuntz, J. D., Gash, A. E., Munir, Z. A. Heat of Combustion of Tantalum−Tungsten Oxide Thermite Composites. Combustion and Flame. 157 (12), 2326-2332 (2010).
  22. Leventis, N., Chandrasekaran, N., Sadekar, A. G., Sotiriou-Leventis, C., Lu, H. One-Pot Synthesis of Interpenetrating Inorganic/Organic Networks of CuO/Resorcinol-Formaldehyde Aerogels: Nanostructured Energetic Materials. Journal of the American Chemical Society. 131 (13), 4576-4577 (2009).
  23. Zhang, K., Rossi, C., Ardila Rodriguez, G. A., Tenailleau, C., Alphonse, P. Development of a Nano-Al/CuO Based Energetic Material on Silicon Substrate. Applied Physics Letters. 91 (11), 113117-113113 (2007).
  24. Xu, D., Yang, Y., Cheng, H., Li, Y. Y., Zhang, K. Integration of Nano-Al with Co3O4Nanorods to Realize High-Exothermic Core-Shell Nanoenergetic Materials on a Silicon Substrate. Combustion and Flame. 159 (6), 2202-2209 (2012).
  25. Shearing, P. R., et al. Exploring Microstructural Changes Assicuated with Oxidation in Ni-YSZ SOFC Electrodes Using High Resolution X-ray Computed Tomography. Solid State Ionics. 216 (28), 69-72 (2012).
  26. Bacciochini, A., Bourdon-Lafleur, S., Poupart, C., Radulescu, M., Ni-Al, J. o. d. o. i. n. B. Nanoscale Energetic Materials: Phenomena Involved During the Manufacturing of Bulk Samples by Cold Spray. Journal of Thermal Spray Technology. In press, (2014).
check_url/52624?article_type=t

Play Video

Cite This Article
Manukyan, K. V., Shuck, C. E., Rogachev, A. S., Mukasyan, A. S. Preparation and Reactivity of Gasless Nanostructured Energetic Materials. J. Vis. Exp. (98), e52624, doi:10.3791/52624 (2015).

View Video