Summary

닭에서 인간의 다발성 골수종 이종 이식 모델의 설립은 종양의 성장, 침략과 혈관 신생을 공부하기

Published: May 01, 2015
doi:

Summary

인간 다발성 골수종 (MM) 세포는 간엽 세포의 생존과 증식을위한 세포 외 매트릭스 성분의지지 미세 환경을 필요로한다. 우리는 종양의 성장, 침윤 및 혈관 신생에 항암제의 효과를 연구하기 위해 접목 인간 골수종 및 중간 엽 세포와 생체 내 닭 배아 모델을 설립했다.

Abstract

다발성 골수종 (MM), 악성 형질 세포 질환, 난치성 유지 및 신규 약물은 환자의 예후를 개선하기 위해 요구된다. 인해 골 미세 자동 / 분비 성장 인자의 부족으로 인간 MM 세포는 배양하기 어렵다. 따라서, 인간의 MM 세포에 새로운 치료제의 작용을 연구하기 위해 시험 관내 및 생체 내 배양 시스템에서 적절한 확립이 절실히 요구되고있다. 여기서 우리는 시험 관내 및 생체 내에서 복잡한 3D 환경에서 인간 다발성 골수종 세포를 성장 모델을 제시한다. MM 세포주 OPM-2 및 RPMI-8226를 형질 전환 유전자 GFP를 발현하는 형질 감염시키고 인간 중간 엽 세포와 콜라겐의 존재 하에서 배양 하였다 타입 I 입체 타원체로 매트릭스합니다. 더하여, 구 상체는 닭 배아 융모 막 (CAM)에 그래프트 된 종양 성장은 스테레오 형광 현미경에 의해 모니터 하였다. 두 모델 모두 새로운 치료 DRU의 연구를 허용복잡한 3D 환경 및 트랜스 특정 GFP-ELISA에서의 균질화 이식 후 종양 세포 질량의 정량화에 GS. 또한, 직하 숙주 조직으로 호스트 및 종양 세포의 침윤 혈관 신생 반응을 입체 현미경으로 매일 모니터링 및 인간 종양 세포 (기-67, CD138, 멘틴) 또는 호스트 벽화 세포 덮는 혈관에 대해 면역 조직 화학 염색에 의해 분석 될 수있다 (최근 desmin / ASMA).

결론적 onplant 시스템은 복잡한 3 차원 환경에서 MM 세포 성장 및 혈관 신생을 연구 할 수 있으며 MM 세포의 생존과 증식을 치료 표적 신규 화합물에 대한 스크리닝을 가능하게한다.

Introduction

Multiple myeloma (MM) is characterized by proliferation of malignant plasma cells in the bone marrow, bone lesions and immunodeficiency 1. Although new treatment options such as proteasome inhibitors (bortezomib) and immune modulatory drugs (pomalidomide and lenalidomide) are available, MM still remains an incurable malignancy with a grim prognosis 2. The bad prognosis might be explained by the extraordinary heterogeneity of MM cell clones that contributes to variable responses to therapy, in particular under long time treatment and selection pressure of MM clones 3.

Preclinical testing of new drugs and their combinations in vitro and in vivo is a critical and time-consuming step for future drug development. Thus, useful in-vivo models of MM are required to gain a better understanding of the biology of the disease and to enable the discovery of new drugs. Actually, the best xenotransplantation models for hematological malignancies and therapeutics are immune-deficient mice, such as the severe-combined immunodeficient (SCID) mice 4-7, the non-obese diabetic/SCID (NOD/SCID) mice 8,9 or the β-microglobulin-knockout NOD/SCID mice 10,11.

Although murine models of human MM in some aspects can resemble the phenotype of human disease, immune-deficient mice are inbred, therefore simulate only one individual response to a drug and costs are very high. Due to immunosuppression animals require special maintenance conditions and the engraftment of human MM in mice requires 6 weeks to 2 months 9,12, unless cells are grafted directly to the bone marrow using a technically demanding procedure with lower rates of animal survival 7,13. Therefore, new methods using stem-cell based organoid models 14, tissue engineering 15 or sophisticated 3D cell culture models 16 have been established. They will compete in the near future with classical animal experiments for preclinical drug testing, but cannot replace systemic toxicity tests in living organisms.

The chicken embryo has been demonstrated before to be a suitable organism for xenotransplantation of human cells and tissues due to lack of adaptive immune response until hatching 17-19. Moreover, each chicken embryo reflects an individual reaction to applied drugs or tumor cells due to genetic diversity within the chicken population. The chorioallantoic membrane (CAM) is a well-established system to study tumor-dependent angiogenesis 20-22. When solid tumors are grafted to the CAM, they display many characteristics of cancers in vivo, including proliferation, invasion, angiogenesis and metastasis 23-27.

Based on the previous experience of our group with CAM xenograft models20,26,27, a human MM model was established that combines the advantage of a human 3D culture system with the model of ex ovo developing chicken embryos. This MM model system allows real time monitoring of MM growth progression, quantification of cell mass and preclinical drug testing.

Protocol

실험 동물 복지의 hatching.The NIH 사무실이이 지역 (HTTP 작성 지침을 제공 할 때까지 오스트리아 법, 미국 공중 보건 서비스 조류 배아의 실험 동물 복지 사무소에 따르면 라이브 척추 동물로 간주되지 않습니다 // www.grants.nih.gov/grants/olaw/references/ilar91.htm 및 NIH 출판 번호 : 06-4515). 1. 세포 배양 및 렌티 바이러스 형질 문화 MM 세포주 OPM-2, RPMI-8226 및 RPMI1640 배지에서 골수로부터 인간 중간 ?…

Representative Results

3D 다발성 골수종 타원체 내 분석 대상 화합물의 시험 관내 분석에서 때문에 체외에서 일차 인간 MM 세포 배양의 한계로는 골수에서 세포 성장 매트릭스 및지지 차 인간 중간 엽 세포 이용하게 인간 MM 세포 라인에 대한 새로운 3D 체외 배양 모델을 확립 (도 1a를, B). EGFP 유전자 MM 셀 라인은 회전 타원체의 3D 성장 후 시각화 및 MM 종?…

Discussion

내화성 MM에 대한 새로운 치료제의 개발은 약물에 대한 인간 MM 세포 민감도를 평가하는 데 시간이 덜 소요되고 비용이 생체 시스템을 필요로한다. 지금까지, 단 몇 생체 시스템은 새로운 항 골수종 치료의 임상 평가에 사용할 수 있습니다. 그들 모두는 화합물 라이브러리 (29)의 대규모 스크리닝에 대한 자신의 한계를 가지고있다.

인간의 MM 셀에 대한 가장 좋은 현재의 모…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors want to thank Ms. Cornelia Heis for her excellent technical assistance in immunohistochemistry and preparation of chicken embryos. This work was supported by the Austrian Science Fund (FWF Grant No. P19552) and the European Union (EU FP7 project Optatio No: 278570).

Materials

RPMI-8226 cells DSMZ ACC 9 STR profiled
OPM-2 cells DSMZ ACC 50 STR profiled
Human mesenchymal stem cells  PromoCell PC-C-12974
HEK293FT cells  Invitrogen R700-07
RPMI1640 Medium Sigma Aldrich R0883
Fetal Bovine Serum  HyClone ThermoScientific SH30070.03
L-Glut- Pen- Strep solution Sigma G6784
DMEM Medium Gibco 31966
NEAA Sigma Life Sciences M7145
Transfection Medium/Opti-MEM  Gibco 51985
eGFP lentiviral particles GeneCopoeia LPP-EGFP-LV105 Ready to use viral particles
pLenti6/V5Dest6 eGFP vector Invitrogen PN 35-1271 from authors
ViralpowerTM packaging mix  Invitrogen P/N 35-1275
Transfection reagent/ Lipofectamin 2000 Invitrogen 11668-027
Blasticidin Invitrogen R210-01
Neomycin Biochrom A2912
Collagen-Type1  Rat Tail BD Biosciences 354236
DMEM powder Life Technologies Art.Nr. 10338582
plitidepsin Pharmamar
bortezomib LKT Lab., Inc. B5871
SPF-white hen eggs Charles River Fertilized  white Leghorn  chicken eggs
Plastic weighing boats neoLab Art.Nr. 1-1125 for ex-ovo culture
Petridish square (Lids) Simport D210-16 for ex-ovo culture
RIPA Buffer (10x) Cell Signaling #9806
Protease Inhibitor Tablets Roche 11 836 170 001
Complete Mini EDTA-free
GFP ELISA Cell Biolabs, Inc. AKR-121
Histocette II Simport M493-6
PFA  37% Roth 7398.1
DPBS Lonza BE17-512F
Ethanol absolut Normapur 20,821,321
Roti-Histol Roth Art.Nr.6640.4
Paraplast Sigma A6330
SuperFrost Microscope Slides R. Langenbrinck  Art.-Nr.
Labor- u. Medizintechnik 03-0060
DakoCytomation Wash Buffer 10x DakoCytomation Code-Nr.
S 3006
Target Retrieval Solution (10x)  pH 6,1 DAKO Code-Nr.
S 1699
H2O2 Merck
m-a-hu ASMA clone 1A4 DAKO M0851
m-a-hu CD138 clone MI15 DAKO M7228
m-a-hu Vimentin clone V9 DAKO M0725
m-a-hu Desmin clone D33 DAKO  M0760
m-a-hu Ki67  clone MIB-1   DAKO  M7240
biotinylated goat- anti-mouse IgG Vector Laboratories Inc. BA-9200
Vectastain Elite ABC Kit Vector Laboratories Inc. # PK-6100
FAST DAB Tablet Set. Sigma Biochemicals # D4293
Mayer’s haemalaun solution Merck 1,092,490,500
Roti Histokitt Roth Art.Nr.6638.2
Bench top rotary microtome Thermo Electron, Shandon Finesse ME+
Tissue embedding station Leica, TP1020
Egg-Incubator Grumbach  BSS160
Stereo fluorescence microscope equipped with an connected with a digital camera (Olympus E410) and flexible cold light  Olympus, SZX10
Ultra Turrax  IKA T10 Homogenizer

References

  1. Kuehl, W. M., Bergsagel, P. L. Multiple myeloma: evolving genetic events and host interactions. Nat.Rev.Cancer. 2 (3), 175-187 (2002).
  2. Kumar, S. K., Gertz, M. A. Risk adapted therapy for multiple myeloma: back to basics. Leuk.Lymphoma. , (2014).
  3. Prideaux, S. M., Conway, O. E., Chevassut, T. J. The genetic architecture of multiple myeloma. Adv.Hematol. 2014, 864058 (2014).
  4. Chauhan, D., et al. A novel orally active proteasome inhibitor ONX 0912 triggers in vitro and in vivo cytotoxicity in multiple myeloma. Blood. 116 (23), 4906-4915 (2010).
  5. Kuehl, W. M. Mouse models can predict cancer therapy. Blood. 120 (2), 238-240 (2012).
  6. Nefedova, Y., Gabrilovich, D. Mechanisms and clinical prospects of Notch inhibitors in the therapy of hematological malignancies. Drug Resist.Updat. 11 (6), 210-218 (2008).
  7. Yaccoby, S., Barlogie, B., Epstein, J. Primary myeloma cells growing in SCID-hu mice: a model for studying the biology and treatment of myeloma and its manifestations. Blood. 92 (8), 2908-2913 (1998).
  8. Dazzi, F., et al. Normal and chronic phase CML hematopoietic cells repopulate NOD/SCID bone marrow with different kinetics and cell lineage representation. Hematol.J. 1 (5), 307-315 (2000).
  9. Lock, R. B., et al. The nonobese diabetic/severe combined immunodeficient (NOD/SCID) mouse model of childhood acute lymphoblastic leukemia reveals intrinsic differences in biologic characteristics at diagnosis and relapse. Blood. 99 (11), 4100-4108 (2002).
  10. Feuring-Buske, M., et al. Improved engraftment of human acute myeloid leukemia progenitor cells in beta 2-microglobulin-deficient NOD/SCID mice and in NOD/SCID mice transgenic for human growth factors. Leukemia. 17 (4), 760-763 (2003).
  11. Pearce, D. J., et al. AML engraftment in the NOD/SCID assay reflects the outcome of AML: implications for our understanding of the heterogeneity of AML. Blood. 107 (3), 1166-1173 (2006).
  12. Li, M., et al. Combined inhibition of Notch signaling and Bcl-2/Bcl-xL results in synergistic antimyeloma effect. Mol.Cancer Ther. 9 (12), 3200-3209 (2010).
  13. Tassone, P., et al. A clinically relevant SCID-hu in vivo model of human multiple myeloma. Blood. 106 (2), 713-716 (2005).
  14. Ranga, A., Gjorevski, N., Lutolf, M. P. Drug discovery through stem cell-based organoid models. Adv.Drug Deliv.Rev. 69-70, 19-28 (2014).
  15. Pereira, R. F., Barrias, C. C., Granja, P. L., Bartolo, P. J. Advanced biofabrication strategies for skin regeneration and repair. Nanomedicine.(Lond). 8 (4), 603-621 (2013).
  16. Fischbach, C., et al. Engineering tumors with 3D scaffolds). Nat.Methods. 4 (10), 855-860 (2007).
  17. Boulland, J. L., Halasi, G., Kasumacic, N., Glover, J. C. Xenotransplantation of human stem cells into the chicken embryo. J.Vis.Exp. (41), (2010).
  18. Deryugina, E. I., Quigley, J. P. Chapter 2. Chick embryo chorioallantoic membrane models to quantify angiogenesis induced by inflammatory and tumor cells or purified effector molecules. Methods Enzymol. 444, 21-41 (2008).
  19. Deryugina, E. I., Quigley, J. P. Chick embryo chorioallantoic membrane model systems to study and visualize human tumor cell metastasis. Histochem.Cell Biol. 130 (6), 1119-1130 (2008).
  20. Kern, J., et al. GRP-78 secreted by tumor cells blocks the antiangiogenic activity of bortezomib. Blood. 114 (18), 3960-3967 (2009).
  21. Ribatti, D., Nico, B., Vacca, A., Presta, M. The gelatin sponge-chorioallantoic membrane assay. Nat.Protoc. 1 (1), 85-91 (2006).
  22. Ribatti, D. The chick embryo chorioallantoic membrane as a model for tumor biology. Exp.Cell Res. , (2014).
  23. Dohle, D. S., et al. Chick ex ovo culture and ex ovo CAM assay: how it really works. J.Vis.Exp. (33), (2009).
  24. Kobayashi, T., et al. A chick embryo model for metastatic human prostate cancer. Eur.Urol. 34 (2), 154-160 (1998).
  25. Koop, S., et al. Fate of melanoma cells entering the microcirculation: over 80% survive and extravasate. Cancer Res. 55 (12), 2520-2523 (1995).
  26. Martowicz, A., Spizzo, G., Gastl, G., Untergasser, G. Phenotype-dependent effects of EpCAM expression on growth and invasion of human breast cancer cell lines. BMC.Cancer. 12, 501 (2012).
  27. Martowicz, A., et al. EpCAM overexpression prolongs proliferative capacity of primary human breast epithelial cells and supports hyperplastic growth. Mol.Cancer. 12, 56 (2013).
  28. Geraerts, M., Willems, S., Baekelandt, V., Debyser, Z., Gijsbers, R. Comparison of lentiviral vector titration methods. 6, 34 (2006).
  29. Farnoushi, Y., et al. Rapid in vivo testing of drug response in multiple myeloma made possible by xenograft to turkey embryos. Br.J.Cancer. 105 (11), 1708-1718 (2011).
  30. Wunderlich, M., Krejci, O., Wei, J., Mulloy, J. C. Human CD34+ cells expressing the inv(16) fusion protein exhibit a myelomonocytic phenotype with greatly enhanced proliferative ability. Blood. 108 (5), 1690-1697 (2006).
  31. Hideshima, T., Mitsiades, C., Tonon, G., Richardson, P. G., Anderson, K. C. Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat.Rev.Cancer. 7 (8), 585-598 (2007).
  32. Parikh, M. R., Belch, A. R., Pilarski, L. M., Kirshner, J. A three-dimensional tissue culture model to study primary human bone marrow and its malignancies. J.Vis.Exp. (85), (2014).
  33. Schuler, J., Ewerth, D., Waldschmidt, J., Wasch, R., Engelhardt, M. Preclinical models of multiple myeloma: a critical appraisal. Expert.Opin.Biol.Ther. 13, S111-S123 (2013).
  34. Kirshner, J., et al. A unique three-dimensional model for evaluating the impact of therapy on multiple myeloma. Blood. 112 (7), 2935-2945 (2008).
  35. Jilani, S. M., et al. Selective binding of lectins to embryonic chicken vasculature. J.Histochem.Cytochem. 51 (5), 597-604 (2003).
check_url/52665?article_type=t

Play Video

Cite This Article
Martowicz, A., Kern, J., Gunsilius, E., Untergasser, G. Establishment of a Human Multiple Myeloma Xenograft Model in the Chicken to Study Tumor Growth, Invasion and Angiogenesis. J. Vis. Exp. (99), e52665, doi:10.3791/52665 (2015).

View Video