Summary

胸腺表征祖定居在小鼠胚胎使用<em>在体内</em>和<em>在体外</em>测定

Published: June 09, 2015
doi:

Summary

This article describes in vivo and in vitro methodology to characterize the thymic settling progenitors by the analysis of the kinetics of generation, phenotype and numbers of their T cell progeny.

Abstract

表征胸腺解决祖重要的是要了解T细胞发育的前期阶段,胸腺,必须设计一种T细胞置换淋巴细胞减少患者的策略。我们研究了胸腺从13鼠胚胎日和18 thymi沉降祖细胞由两个体外互补和体内技术,无论是基于“悬滴”的方法。这种方法允许辐照的殖民胸腺胎儿与叶和E13 / E18还是通过CD45异型标记,从而跟随他们的后代区分胸腺祖。定植混合种群允许分析的祖细胞生物学特性细胞自主的分歧,而与殖民人口要么尽可能去除选择性的竞争压力。殖民胸腺瓣也可以在免疫缺陷雄性受体小鼠允许成熟T细胞后代的体内分析,如叔种群动态接枝他外周免疫系统和不同的组织和器官的殖民化。胎儿胸腺器官培养透露,E13祖细胞迅速发展成为成熟的全部CD3 +细胞,引起了规范γδT细胞亚群,被称为树突状上皮性T细胞。相比之下,E18祖细胞有延迟分化和无法生成树突上皮T细胞。 / – –胸腺-接枝的CD3外周血监测小鼠进一步表明,E18胸腺沉降祖生成,随着时间的推移,更大的成熟T细胞比它们的E13对应的号码,无法在短期内胎儿胸腺可以理解的特征器官培养。

Introduction

T淋巴细胞,轴承αβ或γδT细胞受体(TCR),区分在一个专门的机构,胸腺。充分发展胸腺分为两个不同的区域:皮质,其中胸腺祖发展和地点的胸腺细胞重新排列高效TCR的β和α链基因是从程序性死亡(被称为阳性选择的过程)获救;和髓质,在这里选择的胸腺细胞与太强的反应,以自配体被删除(负选择)1,2。胸腺来源于第三咽囊以为稍后由间充质细胞3包围的内胚层层。它是由起始于天胚胎E12,此后,连续招募所需的正常T细胞发育4造血祖细胞定植。胸腺移民通过连续的发育阶段发展,通过严格监管的程序,发起并策划迈ntained由胸腺Notch信号传导途径的相互作用时的活化与其配体,δ-样4,表达于胸腺上皮细胞(TECs的)5。

胸腺细胞发育开始于所谓的CD4 CD8 双阴性(DN)的阶段。 ,DN2(CD25 + CD44 +),DN3(CD25 + CD44 – )和DN4(CD25 CD44 – ) – DN胸腺细胞可以根据CD25和CD44的表达到DN1(CD44 + CD25)进一步细分。 CD24(HSA)和CD117(的c-Kit)进一步细分DN1隔成5个亚群,其中DN1a和b对应于早期胸腺祖细胞(ETP)。胸腺细胞重新排列T细胞受体δ,β和α链在DN阶段,并进行预-TCR选择(DN3,DN4阶段)。他们进一步迁移到的CD4 + CD8 +双阳性(DP)室,其中的TcRα链重新排列之前正和负塞莱ction。在这个阶段,大多数胸腺细胞被消除,只有一小部分(3-5%)达到的CD4 +或CD8 +成熟T细胞室。

淋巴分化途径过程通过造血干细胞的生成多潜能祖细胞(MPP)和淋巴引发的多潜能祖细胞(LMPP)失去的红细胞和巨核细胞潜力6阶段。 LMPP由缺乏分化血细胞标记物表型定义(谱系阴性,林– ),的c-Kit(CD117)的表达,的Sca-1和Flt3的/ FLK2(CD135)和没有白细胞介素的可检测水平的( IL)-7受体α链(IL-7rα或CD127)。 LMPPs进一步分化为普通淋巴祖(CLP)7,到这个阶段已经失去了产生骨髓细胞的能力。电保留淋巴细胞(B和T细胞),NK细胞,DC和先天淋巴样细胞(ILC)的潜力,并从LMPP相差CD1的表达27,以及缺乏高水平的Sca-1的。

虽然胸腺解决祖细胞(TSP)的性质已经被广泛讨论8,它成为近日明确表示,TSP变化表型,分化潜能和功能,整个开发9。我们的体外体内测定进行到TSP,通过FACS分离细胞从任E13(第一波)或E18(第二波)排序表征。胎儿胸腺器官培养(FTOC)与E13的E18和祖人数相等,不同的轴承异型标志殖民,使跟随他们类似的发展环境和子代细胞揭示内在特性,这两种类型的祖细胞之间的不同照射胸腺叶。无论是通过E13 E18或定植TSP胸腺叶允许开发无选择,由于双方的祖细胞之间的竞争。 在体内移植的殖民胸腺裂片进一步表明还牛逼他E13的成熟后代和E18 TSP 在体内生物不同的特性。从第一波的TSP快速生成T细胞,但引起低的数字αβγδ和T细胞。在后者我们检测Vγ5Vδ1树突上皮T细胞(DETC)中,具有一个不变的TcR,迁移到它们施加在伤口愈合的函数和胚胎发育10中仅产生的表皮。与此相反,TSP从第二波需要更长的时间,以产生高数量的TcR + T细胞和不能生成DETC。

Protocol

伦理声明:所有实验均根据巴斯德研究所伦理宪章,批准由法国农业部执行,欧盟的指导方针。一个机械手与小啮齿动物外科手术培训,由农业部法国教育部认证,完成所有手术干预。 注:见附件表1显示了5步计划程序。 1.选用胚胎使用36 C57BL / 6 CD45.2女性,女12例CD45.1,12 C57BL / 6 CD45.1男性和12 C57BL / 6 CD45.2男性。穿越女雌雄基因型会产生胚胎CD45.1 / 2?…

Representative Results

为了选择一个方法来消耗内源性的胸腺细胞,允许殖民祖最好的发展胸腺叶,我们比较了在照射后殖民胸腺叶T细胞重建的水平或5天的脱氧鸟苷(D-GUA)治疗。结果表明,尽管有在培养的第9天无差异,照射裂片含有更多的T细胞比具有的d卦处理,在这样12.天,照射是小于d卦治疗更为合适后获得T细胞发育胸腺定植( 图1)。研究E13和E18的TSP的发育潜能,我们拓殖E14照射胸腺裂片与两种类…

Discussion

两个主要的测定法可用于分析T细胞分化的体外 。最近报道是造血祖细胞与骨髓基质细胞,OP9的共培养,表达Noth1的配位体,δ-样1或4 12,这2-D测定是容易执行的,高效的和灵敏的,允许分析在单个细胞水平。然而,它既不支持T细胞发育超出DP的阶段也没有γδDETC 13的产生,这两者需要与胸腺上皮的直接相互作用。

FTOCs长期以来一直用于分析T细胞发育<sup…

Disclosures

The authors have nothing to disclose.

Acknowledgements

巴斯德研究所,INSERM,法新社国立德RECHERCHE ANR(格兰特的淋巴细胞'),兴中未来投资计划和“香格里拉法甲勒驳癌症”的支持。

Materials

90 x 15 mm and 35 x 15 mm plastic tissue culture petri dishes. TPP T93100/T9340 Sampling
26GA 3/8 IN 0.45x10mm syringes with needles Beckton-Dickinson Plastipak. BD Plastipak 300015 Cell suspension
Nylon mesh bolting cloth sterilized 50/50 mm pieces. SEFAR NITEX 03-100/32 Filtration of cells
Ethanol 70%. VWR 83801.36 Sterility Actions
Iodide Povidone 10% (Betadine)  MEDA Pharma 314997.8 Sterility Actions
Ketamine 100mg/ml (stock solution) MERIAL  - Anesthesic
Xylazine 100mg/ml in PBS (stock solution) Sigma X1251-1G Anesthesic and muscle relaxant
Buprenorphin 0.3mg/ml stock solution AXIENCE  - Morphinic analgesic
Ophtalmic gel (0.2% cyclosporin) Schering-Plough Animal Health  - Eyes protection
DPBS (+ CaCl2, MgCl2) GIBCO Life Technology 14040-174 to isolate embryos
HBSS Hanks' Balanced Salt Solution (+ CaCl2, MgCl2) GIBCO Life Technology 24020-091 to wash out the blood and dissect the embryos
OPTI-MEM I GlutaMAX I GIBCO Life Technology 51985-026 Medium for cultures
Fœtal Calf serum EUROBIO CVFSVF00-0U additive for cultures
Penicilin and Streptomycin GIBCO Life Technology 15640-055 Antibiotics for cultures
2 b mercapto ethanol GIBCO Life Technology 31350010 additive for cultures
LEICA MZ6 Dissection microscope LEICA MZ6 10445111 Occular W-Pl10x/23
Cold lamp source SCHOTT VWR KL1500 compact Two goose neck fibers adapted
Silicone elastomer World Precision Instruments SYLG184 Dissecting Pad
Spoon, round and perforated Fine Science Tools 10370-18 Dissection tools
Fine Iris Scissors Fine Science Tools 14090-09 Dissection tools
Vannas spring Scissors Fine Science Tools 15018-10 Dissection tools
Forceps : Dumont #5/45 Inox 11 cm F.S.T. 11253-25 Dissection tools
Two pairs of fine straight watchmakers’ forceps Dumont #5 11 cm fine tips. Fine Science Tools 11295-20 Dissection tools
Polyamid thread with needle 6-0   C-3 3/8c ETHICON F2403 for sutures
Needle-holder MORIA/F.S.T. 12060-02 for sutures
Heating pad VWR 100229-100 To maintain mouse temperature during anesthesy
Membrane Isopore RTTPO2500 DUTSCHER 44210 For FTOC
Terasaki 60 wells plates FISHER 1×270 10318801 For hanging drop technique
Gauze swabs steriles 7.5cmx7.5cm Hydrex 11522 To apply disinfecting solution
Fluorescence or biotin labelled antibodies BD Biosciences, Biolegend or e-Biocsiences  Clone Number see table below Staining cells
MACS Columns/Streptavidin Microbeads  Miltenyi Biotec 130-042-401/130-048-101 Cell depletion 
Mice Charles Rivers Laboratories (CD45.1) and Janvier Labs  (CD45.2) C57BL/6 CD45.1 OR CD45.2 Source of cells and thymic lobes 
Mice CDTA Orléans, France CD 3 epsilon Ko CD45.2  Grafting experiment

References

  1. Rodewald, H. R. Thymus organogenesis. Annu Rev Immunol. 26, 355-388 (2008).
  2. Takahama, Y. Journey through the thymus: stromal guides for T-cell development and selection. Nat Rev Immunol. 6, 127-135 (2006).
  3. Anderson, G., Jenkinson, E. J., Moore, N. C., Owen, J. J. MHC class II-positive epithelium and mesenchyme cells are both required for T-cell development in the thymus. Nature. 362, 70-73 (1993).
  4. Douagi, I., Andre, I., Ferraz, J. C., Cumano, A. Characterization of T cell precursor activity in the murine fetal thymus: evidence for an input of T cell precursors between days 12 and 14 of gestation. Eur J Immunol. 30, 2201-2210 (2000).
  5. Calderon, L., Boehm, T. Synergistic, context-dependent, and hierarchical functions of epithelial components in thymic microenvironments. Cell. 149, 159-172 (2012).
  6. Adolfsson, J., et al. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell. 121, 295-306 (2005).
  7. Kondo, M., Weissman, I. L., Akashi, K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell. 91, 661-672 (1997).
  8. Bhandoola, A., von Boehmer, H., Petrie, H. T., Zuniga-Pflucker, J. C. Commitment and developmental potential of extrathymic and intrathymic T cell precursors: plenty to choose from. Immunity. 26, 678-689 (2007).
  9. Ramond, C., et al. Two waves of distinct hematopoietic progenitor cells colonize the fetal thymus. Nat Immunol. 15, 27-35 (2014).
  10. Allison, J. P., Havran, W. L. The immunobiology of T cells with invariant gamma delta antigen receptors. Annu Rev Immunol. 9, 679-705 (1991).
  11. Anderson, G., Jenkinson, E. J. Fetal thymus organ culture. CSH Protoc. , (2007).
  12. Schmitt, T. M., Zuniga-Pflucker, J. C. Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro. Immunity. 17, 749-756 (2002).
  13. Barbee, S. D., et al. Skint-1 is a highly specific, unique selecting component for epidermal T cells. Proc Natl Acad Sci U S A. 108, 3330-3335 (2011).
  14. Douagi, I., Colucci, F., Di Santo, J. P., Cumano, A. Identification of the earliest prethymic bipotent T/NK progenitor in murine fetal liver. Blood. 99, 463-471 (2002).
  15. Malissen, M., et al. Altered T cell development in mice with a targeted mutation of the CD3-epsilon gene. EMBO J. 14, 4641-4653 (1995).
check_url/52795?article_type=t

Play Video

Cite This Article
Ramond, C., Bandeira, A., Berthault, C., Pereira, P., Cumano, A., Burlen-Defranoux, O. Characterization of Thymic Settling Progenitors in the Mouse Embryo Using In Vivo and In Vitro Assays. J. Vis. Exp. (100), e52795, doi:10.3791/52795 (2015).

View Video