Summary

非对称走道:一种新的行为检测方法的研究不对称步态

Published: January 15, 2016
doi:

Summary

Here, we present a protocol to quantify precise stepping in rodents. Cortical and the spinal central pattern generator signals are required for precise foot-placement during obstructed locomotion. We report here the novel constrained walking task that directly examines precise stepping behavior.

Abstract

行为分析通常用于感觉运动障碍的中枢神经系统(CNS)的评估。量化运动赤字在啮齿类动物中最复杂的方法是测量不受约束的步态地上分钟的干扰( 例如 ,手动BBB评分或自动走秀)。然而,不要求用于由脊髓中央模式发生器(CPG)所产生的基本运动的产生皮质输入。因此,无约束行走任务测试运动障碍,由于运动皮质功能障碍只是间接的。在这项研究中,我们提出了一个新颖的,精确的脚的位置运动的任务,评估皮质输入到脊髓中央人民政府。一个仪表钉的方式来施加对称和非对称运动任务模仿偏侧运动障碍。我们表明,从转变在前肢姿态相位特性20%产生变化等距间步幅运动与PREF时错步长。此外,我们建议,非对称走道允许通过皮层控制信号产生行为结果的测量。这些措施是相关的减值皮质损伤后的评估。

Introduction

在幸存的人群脑卒中发病率包括姿势在人类定量评价是一项挑战后的神经功能缺损1中风和动物模型粗大运动障碍。在临床上,这些运动障碍正在使用的主观标准,这是受到了广大患者表现出严重的,而不是中度受损更为敏感测量。同样地,伤后运动行为的动物,主观评价是常见的, 例如 ,在巴索,比蒂和布雷斯纳汉(BBB)运动尺度方法2,3。虽然这些主观评价方法帮助在四脚动物模型和人体步态康复研究之间翻译,与单独的肌肉群活性相关运动缺陷的细节没有评估。此外,要运动运动皮层贡献进行评估,为运动障碍的脑血管意外假定罪魁祸首,只能间接即便是使用最新颖的自动定量方法4,5得到,因为它们依赖于开放的领域或直线行走任务。这些任务不要求皮质贡献,并且可以由脊髓的神经机制, ,中央模式发生器(CPG)网络,它可以幸免于神经损伤最动物模型例如,spinalized动物6来执行 8 。这些脊机制必不可少皮质贡献实验已经牵连于需要预期调整姿势9和达到10,以及精密的 ​​步进10的任务。

此外,大多数神经损伤是不对称的;例如,中风导致偏瘫, 弱点在身上,这导致非对称步态11的一侧 。14。偏瘫步态的非对称性是由非对称spatiotempor产生人的肌肉激活伸肌相关立场相的缩短和步循环的屈相关摆动期的麻痹侧15,16拉长最显著表现。这种趋势还没有被开发在一系列运动的速度在健康或麻痹的动物。在目前的研究中,我们采用的相持续时间的特性17中的分析,它描述与循环的持续时间在每一步骤的函数的摆动或步态站立期的持续时间之间的关系。得到的线性回归模型,然后再与不对称的所有肢体进行分析说明。

我们报道了一种新的低成本的方法来评估下行皮质输入基于精确步进运动任务的四足动物的电机系统的活性。该任务的目的是通过规定徒步安置需求了行走速度的自然分布范围,挑战运动皮层。此外,脚放置要求被操纵到电机系统的左侧或右侧优先挑战。在一个类似的运动的任务,梅斯&Whishaw(2009)研究了失败的速率,对不规则梯级走道错过的步数,在大鼠。我们的方法是免费的这个以前的研究,并详细相位控制的质量,“成功”的步骤 18。

Protocol

下面的训练模式采用平均只SD大鼠相位调节的分析。请确保本文描述的协议是根据你的机构动物护理指南。在这项研究中的所有程序均按照机构的动物护理和使用委员会(IACUC)和Office实验室动物福利(OLAW)在西弗吉尼亚大学医学院的执行和使用实验遵循卫生准则的国家机构动物。 1.设备安装构建不对称的走道为开顶塑料盒中掺进了铝支持的每个角测量155厘米×104厘米…

Representative Results

图2示出了不对称的期间为一个单一代表受试者中运动任务的分析。分别计算的值使用公式1和2从所有受试者单独(图2)的所有条件,并从8雌性Sprague-Dawley大鼠复合数据(250 – 400克, 图3)。一般地,前肢站立阶段的调制是较小的,以该运动条件承蒙侧(短ISL),用的概念相一致,即在优选的侧(长ISL)步态站立期倾向于占据的较大部…

Discussion

The rationale for this study was to develop a behavioral task that quantitatively assesses the changes in precise control of asymmetric locomotor behaviors. The existence of the spinal CPG has been functionally demonstrated for some time20, but the anatomical and functional characteristics that describe its mechanism as well as its modulatory inputs from descending or sensory feedback pathways have not been characterized until the past decade6,21,22. The current consensus is that the intrinsic spina…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Kriss Franklin, Amanda Pollard and Justine Shaffer assisted in animal training and data collection. Sarah Freeman and Alisa Ivanova contributed to data analysis. This study is supported by WVU School of Medicine Start-Up, NIH/NIGMS U54GM104942, and NIH CoBRE P20GM109098.

Materials

MATLAB® R2013a MathWorks Design platform for custom videoa video annotation software
Sony HDR-CX380/B High Definition Handycam Sony 27-HDRCX330/B Video acquisition device.
Jif Creamy Peanut Butter – Gluten Free 454 g J.M. Smucker Company NA Food reward stimulus.
Sucrose Tablet – Chocolate 1800 g TestDiet 1811256 Food reward stimulus.
Manzanita Wood Gnawing Sticks BioServe W0016 For presentation of food reward stimulus.

References

  1. Curzon, P., Zhang, M., Radek, R. J., Fox, G. B. . The Behavioral Assessment of Sensorimotor Processes in the Mouse: Acoustic Startle, Sensory Gating, Locomotor Activity, Rotarod, and Beam Walking. Methods of Behavior Analysis in Neuroscience.. , (2009).
  2. Basso, D. M., Beattie, M. S., Bresnahan, J. C. A sensitive and reliable locomotor rating scale for open field testing in rats. Journal of Neurotrauma. 12 (1), 1-21 (1995).
  3. Basso, D. M., Beattie, M. S., Bresnahan, J. C. Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection. Experimental Neurology. 139 (2), 244-256 (1996).
  4. Li, S., Shi, Z., et al. Assessing gait impairment after permanent middle cerebral artery occlusion in rats using an automated computer-aided control system. Behavioural Brain Research. 250, 174-191 (2013).
  5. Vandeputte, C., Taymans, J. -. M., et al. Automated quantitative gait analysis in animal models of movement disorders. BMC Neuroscience. 11, 92 (2010).
  6. Yakovenko, S. Chapter 10 – A hierarchical perspective on rhythm generation for locomotor control. Progress in Brain Research. 188, 151-166 (2011).
  7. Giszter, S. F., Hockensmith, G., Ramakrishnan, A., Udoekwere, U. I. How spinalized rats can walk: biomechanics, cortex and hindlimb muscle scaling – implications for rehabilitation. Annals of the New York Academy of Sciences. 1198, 279-293 (2010).
  8. Smith, J. L., Edgerton, V. R., Eldred, E., Zernicke, R. F. The chronic spinalized cat: a model for neuromuscular plasticity. Birth Defects Original Article Series. 19 (4), 357-373 (1983).
  9. Yakovenko, S., Drew, T. A motor cortical contribution to the anticipatory postural adjustments that precede reaching in the cat. Journal of Neurophysiology. 102 (2), 853-874 (2009).
  10. Yakovenko, S., Krouchev, N., Drew, T. Sequential Activation of Motor Cortical Neurons Contributes to Intralimb Coordination During Reaching in the Cat by Modulating Muscle Synergies. Journal of Neurophysiology. 105, 388-409 (2011).
  11. Pizzi, A., Carlucci, G., Falsini, C., Lunghi, F., Verdesca, S., Grippo, A. Gait in hemiplegia: Evaluation of clinical features with the Wisconsin Gait Scale. Journal of Rehabilitation Medicine. 39 (9), 170-174 (2007).
  12. Bohannon, R. W., Horton, M. G., Wikholm, J. B. Importance of four variables of walking to patients with stroke. International Journal of Rehabilitation Research. 14 (3), 246-250 (1991).
  13. Richards, C., Malouin, F., Dumas, F., Tardif, D. Gait velocity as an outcome measure of locomotor recovery after stroke. Gait Analysis. Theory and Application. , 355-364 (1995).
  14. Thaut, M. H., McIntosh, G. C., Rice, R. R. Rhythmic facilitation of gait training in hemiparetic stroke rehabilitation. Journal of the Neurological Sciences. 151, 207-212 (1997).
  15. Hsu, A. -. L., Tang, P. -. F., Jan, M. -. H. Analysis of impairments influencing gait velocity and asymmetry of hemiplegic patients after mild to moderate stroke. Archives of Physical Medicine and Rehabilitation. 84 (8), 1185-1193 (2003).
  16. Jansen, K., De Groote, F., Duysens, J., Jonkers, I. Muscle contributions to center of mass acceleration adapt to asymmetric walking in healthy subjects. Gait & Posture. 38 (4), 739-744 (2013).
  17. Halbertsma, J. M. The stride cycle of the cat: the modelling of locomotion by computerized analysis of automatic recordings. Acta physiologica Scandinavica. 521, 1-75 (1983).
  18. Metz, G. A., Whishaw, I. Q. The ladder rung walking task: a scoring system and its practical application. Journal of Visualized Experiments : JoVE. (28), 4-7 (2009).
  19. Hogg, R. V., Ledolter, J. Engineering Statistics. , (1987).
  20. Brown, T. G. The intrinsic factors in the act of progression in the mammal. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character. 84 (572), 308-319 (1911).
  21. Kiehn, O. Locomotor circuits in the mammalian spinal cord. Annual Review of Neuroscience. 29, 279-306 (2006).
  22. Blitz, D. M., Nusbaum, M. P. State-dependent presynaptic inhibition regulates central pattern generator feedback to descending inputs. The Journal of Neuroscience. 28 (38), 9564-9574 (2008).
  23. Martin, J. H., Ghez, C. Red nucleus and motor cortex: parallel motor systems for the initiation and control of skilled movement. Behavioural Brain Research. 28 (1-2), 271-223 (1998).
  24. Drew, T., Jiang, W., Kably, B., Lavoie, S. Role of the motor cortex in the control of visually triggered gait modifications. Canadian Journal of Physiology and Pharmacology. 74 (4), 426-442 (1996).
  25. Drew, T., Andujar, J. -. E., Lajoie, K., Yakovenko, S. Cortical mechanisms involved in visuomotor coordination during precision walking. Brain Research Reviews. 57 (1), 199-211 (2008).
  26. Longa, E. Z., Weinstein, P. R., Carlson, S., Cummins, R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 20 (1), 84-91 (1989).
  27. Uluç, K., Miranpuri, A., Kujoth, G. C., Aktüre, E., Başkaya, M. K. Focal Cerebral Ischemia Model by Endovascular Suture Occlusion of the Middle Cerebral Artery in the Rat. Journal of Visualized Experiments : JoVE. 48, e1978 (2011).
  28. Hackney, D. B., Finkelstein, S. D., Hand, C. M., Markowitz, R. S., Black, P. Postmortem Magnetic Resonance Imaging of Experimental Spinal Cord Injury Magnetic Resonance Findings versus In Vivo Functional Deficit. Neurosurgery. 35 (6), 1104-1111 (1994).
  29. Kjaerulff, O., Kiehn, O. Distribution of Networks Generating and Coordinating Locomotor Activity in the Neonatal Rat Spinal Cord In Vitro: A Lesion Study. The Journal of Neuroscience. 16 (18), 5777-5794 (1996).
  30. Liddell, E. G. T., Phillips, C. G. Striatal and pyramidal lesions in the cat. Brain. 69 (4), 264-279 (1946).
  31. Beloozerova, I. N., Sirota, M. G. The Role of the Motor Cortex in the Control of Accuracy of Locomotor Movements in the Cat. Journal of Physiology. 461, 1-25 (1993).
  32. Hill, K. D., Goldie, P. A., Baker, P. A., Greenwood, K. M. Retest reliability of the temporal and distance characteristics of hemiplegic gait using a footswitch system. Archives of Physical Medicine and Rehabilitation. 75 (5), 577-583 (1994).
  33. Hillyer, J. E., Joynes, R. L. A new measure of hindlimb stepping ability in neonatally spinalized rats. Behavioural Brain Research. 202 (2), 291-302 (2009).
check_url/52921?article_type=t

Play Video

Cite This Article
Tuntevski, K., Ellison, R., Yakovenko, S. Asymmetric Walkway: A Novel Behavioral Assay for Studying Asymmetric Locomotion. J. Vis. Exp. (107), e52921, doi:10.3791/52921 (2016).

View Video