Summary

协议的鲁棒抗除草剂试验在不同杂草

Published: July 02, 2015
doi:

Summary

A robust and flexible approach to confirm herbicide resistance in weed populations is presented. This protocol allows the herbicide resistance levels to be inferred and applied to a wide range of weed species and herbicides with minor adaptations.

Abstract

Robust protocols to test putative herbicide resistant weed populations at whole plant level are essential to confirm the resistance status. The presented protocols, based on whole-plant bioassays performed in a greenhouse, can be readily adapted to a wide range of weed species and herbicides through appropriate variants. Seed samples from plants that survived a field herbicide treatment are collected and stored dry at low temperature until used. Germination methods differ according to weed species and seed dormancy type. Seedlings at similar growth stage are transplanted and maintained in the greenhouse under appropriate conditions until plants have reached the right growth stage for herbicide treatment. Accuracy is required to prepare the herbicide solution to avoid unverifiable mistakes. Other critical steps such as the application volume and spray speed are also evaluated. The advantages of this protocol, compared to others based on whole plant bioassays using one herbicide dose, are related to the higher reliability and the possibility of inferring the resistance level. Quicker and less expensive in vivo or in vitro diagnostic screening tests have been proposed (Petri dish bioassays, spectrophotometric tests), but they provide only qualitative information and their widespread use is hindered by the laborious set-up that some species may require. For routine resistance testing, the proposed whole plant bioassay can be applied at only one herbicide dose, so reducing the costs.

Introduction

除草剂是最广泛使用的杂草控制措施,占全球植物保护市场1高达50%。他们是相对便宜的工具,避免劳动密集和费时的土壤耕作活动,并最终导致成本效益,安全和有利可图的粮食生产2。然而,巨大的物候和遗传变异存在于许多杂草,对除草剂的使用过度依赖在一起,经常导致抗除草剂杂草种群的选择。选择性除草剂的一个非常具体的目标代谢引进3-5急剧增加的阻力案件的数量多年来。到目前为止,世界各地的240种杂草(双子叶植物140和100单子叶植物)产生了抗性行动(SOA)4不同的除草剂站点。这是一个大问题杂草管理,更一般的可持续作物生产。

e_content“>早检测电阻的基础上,可靠的试验,在温室中频繁地进行,是管理除草剂抗性杂草的关键步骤。根据该目标,精度,时间和可利用的资源所需的水平不同的方法已被开发,如以及考虑6-12的杂草种类。然而,当确认一个新的杂草生物型的电阻状态是必需的( 即,一组个人共享几个生理特征,包括生存属于一种或多种除草剂的能力在通常将控制它们的剂量用于特定基),一个强大的整株植物生物测定需要在受控环境4,11进行。

一个生物型是刚刚一种除草剂抗性很少。因此,每个生物型的特征在于一定的阻力图案,SOA的即,数量和类型的除草剂是抗性,并且由给定的阻力级别每个除草剂13。早期的和可靠的决心交叉或多重耐药5的格局,14是现场管理性的重要。

值得一提的是,抗除草剂无关与自然容忍对某些除草剂, 例如,双子叶植物与ACC酶抑制除草剂,单子叶植物与2,4-D, 问荆对一些杂草展览草甘膦。

本文提出了一种可靠的方法来测试假定采样除草剂在控制通过除草剂​​(S)差已经报道领域耐生物型。相关的变体,以相对于所涉及的杂草种类的标准协议被提出。在仅使用一种除草剂剂量15或治疗种子在培养皿8根据任一整株植物生物测定法替代的技术/协议的优点都涉及到更高reliability和推断,因为在实验中列入两个除草剂剂量的阻力水平的可能性。然而,对于常规的电阻测试中,相同的方法可以在仅一种除草剂剂量施加,所以降低了成本。

以及允许确认电阻状态的,可以同时用于优化下面研究步骤和/或制定完善的抗性管理策略获得的信息。

Protocol

1.种子取样和存储监视不合理的除草剂表现不佳耕地, 即不因不利的气候条件或低质量的除草剂处理。 收集来自一个物种的种子样品的时间和分配一个唯一的代码。成熟的种子通常是前收割从幸存的除草剂处理(S)的植物收集。及时监测,观察,如果种子是由母厂棚成熟时。 在每个样品填表说明分配的唯一代码在赛季中使用的物质,收集日期,GPS坐标,直辖市,农?…

Representative Results

为了评估推定抗性群体的电阻状态,这是基本的,以包括在测定中的易感检查以便核实除草剂效力。的筛选试验上进行P.结果虞美人种群,杂草为害麦田,报告于图2中,其中的上易感检查(09-36),并在可疑的抗性酮(10-91)4芽后除草剂的效力呈现。人口09-36完全被ALS抑制剂受控iodosulfuron而只有一个植物存活测试,florasulam和苯磺隆( 图2)的另两个的ALS除草?…

Discussion

内协议的几个步骤是抗除草剂的人口的成功关键评估:1)种子应当收集成熟时从幸存的除草剂处理(S)的植物。在母株的种子成熟是至关重要的,以避免在种子发芽后的困难; 2)种子的存放建议避免霉菌,防止发芽的扩散; 3)苗应在合适的生长阶段来处理,所报告的除草剂包装的标签上。必须小心,使得所处理的植物已经大致达到相同的生长阶段; 4)将除草剂溶液应准备并准确处理,以便苗用?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The research was supported by the National Research Council (CNR) of Italy. The authors thank GIRE members for collecting seed samples and are grateful to Alison Garside for revising the English.

Materials

Paper bags Celcar SAS
Plastic dishes ISI plast S.p.A. SO600 Transparent plastic
Sulfuric acid 95-98% Sigma-Aldrich 320501
Non-woven fabric Carretta Tessitura Art.TNT17 Weight  17 gr m²
Chloroform >99.5% Sigma-Aldrich C2432
Agar Sigma-Aldrich A1296
Potassium nitrate >99.0% Sigma-Aldrich P8394
Plastic containers Giganplast 1875/M 600 x 400 x 110 mm
Plastic trays Piber plast G1210A 325 x 265 x 95 mm
Polystyrene trays Plastisavio S24 537x328x72 mm, 24 round cells (6×4) 
Copper sulfate Sigma-Aldrich 451657
Agriperlite Blu Agroingross sas AGRI100
Peat Blu Agroingross sas TORBA250
Germination cabinet KW W87R
Nozzles Teejet  XR11002-VK, TP11001-VH The second type of nozzles are used only for glyphosate
Barcode generator Toshiba TEC SX4
Labels with barcode Felga TT20200 Stick-in labels with rounded corners
Barcode reader Cipherlab 8300-L Portable data terminal
Bench sprayer Built in house
HERBICIDES INCLUDED IN THE RESULTS:
Commercial product Active ingredient Company Comments
Altorex imazamox BASF
Azimut  florasulam Dow AgroSciences
Biopower Bayer Crop Science Surfact to be used with Hussar WG
Dash BASF Surfact to be used with Altorex
Granstar  tribenuron-methyl Dupont
Gulliver  azimsulfuron Dupont
Hussar WG  iodosulfuron Bayer Crop Science
Nominee  bispyribac-Na Bayer Crop Science
Roundup glyphosate Monsanto
Trend Dupont Surfact to be used with Granstar and Gulliver
Viper  penoxsulam Dow AgroSciences
Weedone LV4 2,4-D Isagro

References

  1. Massa, D., Kaiser, Y. I., Andújar-Sánchez, D., Carmona-Alférez, R., Mehrtens, J., Gerhards, R. Development of a geo-referenced database for weed mapping and analysis of agronomic factors affecting herbicide resistance in Apera spica-venti L. Beauv. (Silky Windgrass). Agronomy. 3 (1), 13-27 (2013).
  2. Powles, S. B., Shaner, D. L. . Herbicides Resistance and World Grains. , 308 (2001).
  3. Sattin, M. Herbicide resistance in Europe: an overview. Proc. BCPC International Congress. , 131-138 (2005).
  4. Jasieniuk, M., Le Corre, V. Deciphering the evolution of herbicide resistance in weeds. Trends Genet. 29 (11), 649-658 (2013).
  5. Heap, I. M. Identification and documentation of herbicide resistance. Phytoprotection. 75 (4), 85-90 (1994).
  6. Beckie, H. J., Heap, I. M., Smeda, R. J., Hall, L. M. Screening for herbicide resistance in weeds. Weed Technol. 14 (2), 428-445 (2000).
  7. Tal, A., Kotoula-Syka, E., Rubin, B. Seed-bioassay to detect grass weeds resistant to acetyl coenzyme A carboxylase inhibiting herbicides. Crop Prot. 19, 467-472 (2000).
  8. Boutsalis, P. Syngenta Quick-Test: a rapid whole-plant test for herbicide resistance. Weed Technol. 15 (2), 257-263 (2001).
  9. Menchari, Y., et al. Weed response to herbicides: regional-scale distribution of herbicide resistance alleles in the grass weed Alopecurus myosuroides. New Phytol. 171 (4), 861-874 (2006).
  10. Burgos, N. R., et al. Review: confirmation of resistance to herbicides and evaluation of resistance levels. Weed Sci. 61 (1), 4-20 (2013).
  11. Owen, M. J., Martinez, N. J., Powles, S. B. Multiple herbicide-resistant Lolium rigidum. (annual ryegrass) now dominates across the Western Australian grain belt. Weed Res. 54 (3), 314-324 (2014).
  12. Beckie, H. J., Tardif, F. J. Herbicide cross resistance in weeds). Crop Prot. 35, 15-28 (2012).
  13. Moss, S. R., et al. The occurrence of herbicide-resistant grass-weeds in the United Kingdom and a new system for designating resistance in screening assays. Proc. BCPC Weeds. , 179-184 (1999).
  14. Baskin, C. C., Baskin, J. M. . Seeds, Ecology, Biogeography and Evolution of dormancy and Germination. , 27-42 (1998).
  15. Sattin, M., Gasparetto, M. A., Campagna, C. Situation and management of Avena sterilis. ssp. ludoviciana. and Phalaris paradoxa. resistant to ACCase inhibitors in Italy. Proc. BCPC – Weeds. , 755-762 (2001).
  16. Scarabel, L., Varotto, S., Sattin, M. A European biotype of Amaranthus retroflexus. cross-resistant to ALS inhibitors and response to alternative herbicides. Weed Res. 47 (6), 527-533 (2007).
  17. Collavo, A., Panozzo, S., Lucchesi, G., Scarabel, L., Sattin, M. Characterisation and management of Phalaris paradoxa. resistant to ACCase-inhibitors. Crop Prot. 30 (3), 293-299 (2011).
  18. Scarabel, L., Carraro, N., Sattin, M., Varotto, S. Molecular basis and genetic characterisation of evolved resistance to ALS-inhibitors in Papaver rhoeas. Plant Sci. 166 (3), 703-709 (2004).
  19. Panozzo, S., Scarabel, L., Tranel, P. J., Sattin, M. Target-site resistance to ALS inhibitors in the polyploid species Echinochloa crus-galli. Pestic. Biochem. Phys. 105 (2), 93-101 (2013).
  20. Sattin, M., Berto, D., Zanin, G., Tabacchi, M. Resistance to ALS inhibitors in rice in north-western Italy. Proc. BCPC. Weeds. , 783-790 (1999).
  21. Scarabel, L., Berto, D., Sattin, M. Dormancy breaking and germination of Alisma plantago-aquatica. and Scirpus mucronatus. Aspects of Applied Biology. 69, 285-292 (2003).
  22. Collavo, A., Strek, H., Beffa, R., Sattin, M. Management of an ACCase-inhibitor-resistant Lolium rigidum. population based on the use of ALS inhibitors: weed population evolution observed over a 7 years field-scale investigation. Pest Manag. Sci. 69 (2), 200-208 (2013).
  23. Scarabel, L., Panozzo, S., Savoia, W., Sattin, M. Target-site ACCase-resistant Johnsongrass (Sorghum halepense). selected in summer dicot crops. Weed Technol. 28 (2), 307-315 (2014).
  24. Hess, M., Barralis, H., Bleiholder, H., Buhur, L., Eggers, T., Hack, H., Strauss, R. Use of the extended BBCH scale – general for the description of the growth stages of mono- and dicotyledonous weed species. Weed Res. 37 (6), 433-441 (1997).
  25. Collavo, A., Sattin, M. First glyphosate-resistant Lolium. spp. biotypes found in a European annual arable cropping system also affected by ACCase and ALS resistance. Weed Res. 54 (4), 325-334 (2014).
  26. Scarabel, L., Cenghialta, C., Manuello, D., Sattin, M. Monitoring and management of imidazolinone-resistant red rice (Oryza sativa. L., var. sylvatica.) in Clearfield® Italian paddy rice. Agronomy. 2 (4), 371-383 (2012).
  27. Zelaya, I. A., Anderson, J. A. H., Owen, M. D. K., Landes, R. D. Evaluation of spectrophotometric and HPLC methods for shikimic acid determination in plants: Models in glyphosate-resistant and-susceptible crops. J. Agric. Food Chem. 59 (6), 2202-2212 (2011).
check_url/52923?article_type=t

Play Video

Cite This Article
Panozzo, S., Scarabel, L., Collavo, A., Sattin, M. Protocols for Robust Herbicide Resistance Testing in Different Weed Species. J. Vis. Exp. (101), e52923, doi:10.3791/52923 (2015).

View Video