Summary

酸化鉄ナノ粒子との機能を有する磁性細菌Nanocelluloseの作製

Published: May 26, 2016
doi:

Summary

Here, we present a protocol to make a bacterial nanocellulose (BNC) magnetic for applications in damaged blood vessel reconstruction. The BNC was synthesized by G. xylinus strain. On the other hand, magnetization of the BNC was realized through in situ precipitation of Fe2+ and Fe3+ ferrous ions inside the BNC mesh.

Abstract

この研究では、細菌によって産生される細菌nanocellulose(BNC)がグルコンxylinus磁性細菌nanocellulose(MBNC)を得鉄(Fe 3 O 4)(IONP)酸化鉄ナノ粒子とin situで合成され、含浸されています。 MBNCの合成は、正確かつ特異的に設計された多段階プロセスです。簡潔には、細菌nanocellulose(BNC)ペリクルは保持G.から形成されていますサイズと形態の我々の実験要件に応じxylinus株 。塩化鉄(III)六水和物(のFeCl 3・6H 2 O)および2鉄(II)塩化物水和物(のFeCl 2・4H 2 O)の溶液:1のモル比で調製し、脱酸素、高純度の水で希釈されます。 BNCのペリクルは、その後、反応物と容器内に導入されます。この混合物を沈殿させるためにドロップすることにより撹拌し、次いで、添加されたシリコンオイルバス及び水酸化アンモニウム(14%)中で80℃に加熱しますBNCメッシュに第一鉄イオン。この最後のステップは、BNCのペリクルに磁気特性を付与する細菌nanocelluloseメッシュ内部のその場でのマグネタイトナノ粒子( ある Fe 3 O 4) 形成することができます。毒性アッセイは、BNC-IONPペリクルの生体適合性を評価しました。ポリエチレングリコール(PEG)は、それらの生体適合性を改善するためにIONPsをカバーするために使用されました。走査型電子顕微鏡(SEM)画像はIONPがBNCマトリックスの空間をインターレース原線維に優先的に位置していたが、それらのいくつかはまた、BNCリボンに沿って発見されたことを示しました。 MBNC上で行わ磁気力顕微鏡の測定はMBNCペリクルの磁気的性質を確認し、高いと強度が弱い磁場で存在磁区を検出しました。この作業で得られたヤング率の値は、以前の研究で、いくつかの血管のために報告されたものと合理的な合意でもあります。

Introduction

細菌性nanocellulose(BNC)は、 アセトバクター・キシリナム菌株によって合成もグルコンxylinusとして知られており、静置培養中の空気-液体界面でのフィルムまたはペリクルの形で堆積されます。これらのBNCのペリクルは、それらが成長している容器の形態を採用し、それらの厚さは、培養中の日数に依存します。A. xylinusは、重合およびその後の結晶化の過程を経てセルロースミクロフィブリルの合成のための培地中のグルコースを使用しています。グルコース残基の重合は、グルカン鎖が細胞エンベロープに分散単一孔から押し出される細菌の外膜で行われます。セルロースミクロフィブリルの結晶化は、H結合1枚を積層し、続いてファンデルワールス結合によりグルカン鎖状シートの形成と細胞外空間で発生します。

磁石BNCマトリックスに統合ICナノ粒子は、動脈壁の損傷部位に、磁性ナノ粒子を含む平滑筋細胞(平滑筋細胞)を指示し、閉じ込めるために必要な力を増大させるために外部磁場によって容易に操作することができます。この戦略は離れて、他の組織からのSMCを保持し、血流によって及ぼされる力に抗して所定の位置に細胞を保持します。平滑筋細胞は、それらが中膜2に主に位置する豊富な層を形成する血管のvasoelasticityにおいて重要な役割を果たすことが示されています。

MBNCの合成に使用される方法は、BNCペリクルを浸漬し、80℃の塩化鉄(III)六水和物と塩化鉄(II)四水和物の溶液中で攪拌することを含みます。水酸化アンモニウムは、BNCメッシュ内部の酸化鉄ナノ粒子を形成するために添加されます。水酸化アンモニウムの添加は黒にオレンジ色の溶液の色を変化させます。一緒にBNC線維に沿ってIONPsコンパクト不均一な分布を持つの。

このプロトコルは行方不明、破損または負傷した小径の血管の代用として使用することを意図している私たちは、磁性細菌nanocellulose(MBNC)と命名している細菌nanocellulose磁性ナノ粒子ペリクル、の設計に焦点を当てています。 HS Barudおよび共同研究者らは最近、PEGおよび超常磁性酸化鉄ナノ粒子3の安定した水性分散液中のBNCペリクルを混合することにより、BNCベースのフレキシブル磁気紙を製造するための同様の作業を公開しています。ここでは、バクテリアセルロースの生産および磁性ナノ粒子と、その場での含浸を説明します。単一のDNA鎖切断の検出に基づく細胞毒性アッセイは、BNCとMBNCペリクルの生体適合性を試験しました。

Protocol

細菌Nanocellulose(BNC)の作製注:特に指定のない限り、すべての手順は、無菌条件下で行われます。 培養液を準備します。 酵母エキス、ペプトン15gのマンニトール125.0 gであり、高純度の水500mlを25gを組み合わせることにより、液体培養培地500mlを調製します。 4℃で20分間、店舗120℃で、この混合物をオートクレーブ。 酵母エキス、ペプトン3.0gのマン?…

Representative Results

G.の潜伏期間xylinusは、9日間の合計であったが、ペリクルは、以前形成し始め、約2日後に明らかでした。 BNCの肉眼的外観を図1、その模倣皿成長文化のそれの形で表示されている。 図 2は、同様に上記のプロトコルに関係する主なステップをサマリーをBNC-IONPのペリクルを製造する方法について説明し要部構成。 <…

Discussion

BNCペリクルの厚さや大きさを容易にインキュベーション時間、それは静的培養中に成長しているフラスコの大きさを変えることによって操作することができます。 BNCのmicropropertiesは、多孔性として、静的培養中の酸素比率を変えることによって変更することができます。高い酸素濃度が厳しいBNC 11をました 。 A.ボーダンと共同研究者はG.の発酵プロセスの間に100%?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was funded by Department of Defense under contract No. W81XWH-11-2-0067

Materials

Glucoacetobacter Xylinus ATCC 700178
Agar Sigma Aldrich A1296-500G 
D-Mannitol Bioxtra Sigma Aldrich M9546-250G 
Yeast Extract BD Biosciences 212750
Bacteriological Peptone Sigma Aldrich P0556
Sodium Hydroxide, 50% Solution In Water Sigma Aldrich 158127-100G
Iron(III) Chloride Hexahydrate Sigma Aldrich 236489-100G 
Ammonium Hydroxide  Macron Fine Chemicals 6665-46
Poly(Ethylene Glycol), Average Mn 400 Sigma Aldrich 202398-250G 
Iron (II) chloride tetrahydrate Sigma Aldrich 44939-250G
Disposable petri dish Sigma Aldrich BR452000
Disposable Inoculating Loop Fisher Scientific 22-363-604 
Anhydrous Calcium Sulfate W.A. Hammond Drierite  13001
High vacuum grease Sigma Aldrich Z273554-1EA
Laboratory pipetting needle with 90° blunt ends Sigma Aldrich CAD7937-12EA
pH test strips   Sigma Aldrich P4786-100EA
Round-bottom three neck angle type distilling flask Sigma-Aldrich CLS4965250
Silicone oil for oil baths Sigma-Aldrich 85409-250ML 
Drying Tube Chemglass CG-1295-01
Septum Stopper, Sleeve Type Chemglass CG-3022-98
Magnetic stir bar Chemglass CG-2001-05
Condenser Chemglass CG-1218-01
Temperature Controller BriskHeat SDC120JC-A
Stirring Hotplate Fisher Scientific 11-100-49SH 
Comet Assay Kit Trevigen 4250-050-K
SYBR Gold Nucleic Acid Gel Stain Life Technologies S-11494
bio-AFM JPK Instruments NanoWizard 4a BioScience AFM
Nanoindenter Micro Materials Ltd Multi-module mechanical tester 
Scanning electron microscopy (SEM) Hitachi High Technologies America Hitachi S-4800

References

  1. Saxena, I. M., Brown, R. M. Biosynthesis of bacterial cellulose. Bacterial Nanocellulose: A Sophisticated Multifunctional Material. , 1-18 (2012).
  2. Chan-Park, M. B., Shen, J. Y. Biomimetic control of vascular smooth muscle cell morphology and phenotype for functional tissue-engineered small-diameter blood vessels. J.Biomed.Mater.Res.A. 88, 1104-1121 (2009).
  3. Barud, H. S., et al. Biocellulose-based flexible magnetic paper. J. Appl. Phys. 117, (2015).
  4. Märtson, M., Viljanto, J., Hurme, T., Laippala, P., Saukko, P. Is cellulose sponge degradable or stable as implantation material? An in vivo subcutaneous study in the rat. Biomaterials. 20, 1989 (1999).
  5. Illésa, E., Tombácza, E., Szekeresa, M., Tótha, I., Szabób, &. #. 1. 9. 3. ;., Iván, B. Novel carboxylated PEG-coating on magnetite nanoparticles designed for biomedical applications. J. Magn. Magn. Mater. 380, 132 (2015).
  6. Torrisi, V., et al. Preventing corona effects: multiphosphonic acid poly(ethylene glycol) copolymers for stable stealth iron oxide nanoparticles. Biomacromolecules. 15, 3171 (2014).
  7. Cai, Z., Kim, J. Bacterial cellulose/poly(ethylene glycol) composite: characterization and first evaluation of biocompatibility. Cellulose. 17, 83 (2010).
  8. Wu, W., He, Q., Jiang, C. Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res. Lett. 3, 397-415 (2009).
  9. Ulbricht, J., Jordan, R., Luxenhofer, R. On the biodegradability of polyethylene glycol, polypeptoids and poly (2-oxazoline)s. Biomaterials. 35, 4848 (2014).
  10. Azqueta, A., Collins, A. R. The essential comet assay: a comprehensive guide to measuring DNA damage and repair. Arch. Toxicol. 87 (6), 949-968 (2013).
  11. Scherner, M., et al. In vivo application of tissue-engineered blood vessels of bacterial cellulose as small arterial substitutes: proof of concept. J. Surg. Res. 189, 340 (2014).
  12. Bodin, A., et al. Influence of cultivation conditions on mechanical and morphological properties of bacterial cellulose tubes. Biotechnol Bioeng. 97, 425 (2007).
  13. Zaborowska, M., et al. Microporous bacterial cellulose as a potential scaffold for bone regeneration. Acta Biomaterialia. 6, 2540 (2010).
  14. Karimi, A., et al. A comparative study on the mechanical properties of the umbilical vein and umbilical artery under uniaxial loading. Artery Res. 8, 51 (2014).
  15. Lina, F., Ping, Z., Shengmin, Z., Guang, Y. Evaluation of bacterial nanocellulose-based uniform wound dressing for large area skin transplantation. Mater. Sci. Eng. C. 33, 2995 (2013).
  16. Olsson, R. T., et al. Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nature Nanotech. 5 (8), 584-588 (2010).
  17. Torre, B., et al. Magnetic force microscopy and energy loss imaging of superparamagnetic iron oxide nanoparticles. Sci. Rep. 1 (202), 1-8 (2011).

Play Video

Cite This Article
Arias, S. L., Shetty, A. R., Senpan, A., Echeverry-Rendón, M., Reece, L. M., Allain, J. P. Fabrication of a Functionalized Magnetic Bacterial Nanocellulose with Iron Oxide Nanoparticles. J. Vis. Exp. (111), e52951, doi:10.3791/52951 (2016).

View Video