Summary

设计和弹性股软模块化机器人微创手术制造

Published: November 14, 2015
doi:

Summary

This paper describes the design and fabrication of a soft unit for surgical manipulators. The base module includes three flexible fluidic actuators to achieve omnidirectional bending and elongation, and a granular jamming-based mechanism to enable stiffness control. A complete mechanical characterization is also reported.

Abstract

近年来,软机器人技术已经引起了越来越多在​​医疗领域的兴趣,因为它们在非结构化环境本质安全的相互作用。与此同时,新的程序和技术已经被开发,以减少外科手术的侵入性。微创外科(MIS)已成功地用于腹部干预,但是标准的MIS程序主要是基于刚性或半刚性的工具,限制了临床医生的灵巧。本文提出了一种柔软,高灵巧机械臂的管理信息系统。该机器人是由章鱼臂的生物学功能的启发,并采用模块化方法。每个模块提供相同的功能特性,因此实现高灵活性和多功能性时更模块集成。本文详细描述了设计,制造过程和材料所必需的单个单元,这是由制造CASTIN的发展具体的模具内G型硅。结果包含在弹性筒包括三个弹性气动致动器,使延伸率和单元的全向弯曲。外部编织鞘改善了模块的运动。在每个模块的中心的粒状干扰系机构改变该结构的过程中的任务的刚度。测试表明,该模块能够弯曲达120°和伸长高达66%的初始长度的。该模块产生的47 N A最大的力,其硬度可提高达36%。

Introduction

在医疗领域最近的趋势正在推动在外科手术的侵入性的降低。微创外科(MIS)已成功地在过去的几年中对于腹部手术改善。 MIS过程基于使用通过放置在腹壁四个或五个接入点(套管针)介绍的工具。为了减少套管针的数量,器械可通过单端口腹腔镜(SPL)或自然腔腔道内窥镜手术(NOTES)1插入。这些程序防止外部醒目的伤痕,但会增加在执行手术难度的临床医生。这个限制主要是由于访问的已缩减点,并把该文书,这是不能够避免或通过周围器官2的刚性和半刚性的性质,3。敏捷和运动可以使用改进的铰接式和超冗余机器人可覆盖一个更宽的和更复杂的工作区,第我们能够在身体的特定目标,以更容易地达到4,5,6和工作,作为必要时7回缩系统。灵活的机械手可以提高组织的合规性,从而使接触比传统工具更安全。

然而,这些机械手通常缺乏当达到目标稳定性并且通常它们无法控制与周围组织8,接触件9。研究生物结构,诸如章鱼 10和象鼻11,最近已激发的设计灵活的,变形的,符合机械手与自由(自由度)度的冗余数量和可控刚度12。这些种类的设备利用被动弹簧,智能材料,气动元件,或筋13,14,15,通常,操纵器制造为柔软而有弹性的材料并不能保证高的力的产生。

Ť他僵硬FLOP(刚度控制的灵活和可学习机械手进行外科手术)机械手已被最近提出作为一种新型的手术设备,用于笔记和SPL灵感来自于章鱼的能力。为了克服以往的软机器人的局限性,它具有柔软的身体以及高灵活性,高力和可控刚度16。

操纵器的体系结构是基于模块化的方法:多个单元,具有相同的结构和功能,是集成在一起。单个单元于图1,它是根据由一个多相制造而得到的弹性圆柱体。组装步骤的模具组件和铸造工艺的使三个空腔(用于流体致动),以及一个中空的中心通道17(用于容纳粒状干扰系机构 18)将要被嵌入。腔室被放置在120℃,从而使IR结合通胀产生全方位的运动和伸长率。另外一个外部编织鞘被放置在外部时加压,从而优化了腔室的致动的效果在模块运动(弯曲和伸长率),以限制的流体腔室的径向向外扩张。

中心通道容纳填充有颗粒材料的外部膜构成的圆柱形设备。当的真空压力被施加,它改变它的弹性性能引起的硬化从而影响整个模块的属性。

运动和刚度性能由外部设置,包括一空气压缩机和三个压力阀致动腔室,一个真空泵用于激活真空中该硬化信道进行控制。直观的用户界面,允许在模块内部驱动和真空压力的控制。

本文详细介绍了fabricatio这个机械手和报告基本运动能力最显著结果的单个模块的n个过程。考虑到设备的模块化性质,制造和只是一个单一的模块的性能的评估还使得结果进行扩展,并预测一个多模块操纵器集成两个或多个模块的基本行为。

Protocol

注意:此协议描述了单个模块,它包括流体腔室,加强槽,致动管线和外部护套的制造阶段。下面的过程有在通风橱,穿着白大褂和手套出于安全原因被执行。如前面提到的,弹性单元的制造过程是基于依次使用设计CAD软件模具。它们是由在图2中所示和表1中所列的 13件。 1.制备有机硅称量12个克A部分和12克B部分在相同的塑料或玻璃培养皿并?…

Representative Results

的制造中,在协议中所描述的各个阶段,示于图3中 。 为了评价该技术的有效性和最终原型的结果,该模块在不同的工作条件下进行测试。外部设置允许两个致动和模块的刚度的控制。它包括空气压缩机,激活三个阀门。它们被连接到集成在腔室中的含硅管和允许他们的加压。的真空泵连接于管集成在粒状干扰膜为模块刚度控制。阀和真空泵连接到一个电子板,?…

Discussion

The technique described in this protocol enables the fabrication of a pneumatically actuated soft unit usable for modular compliant structures. Thanks to the design of the molds and their simple assembly, it is possible to fabricate one complete module in about 4 hours with 7 main steps. The process of fabrication involves specific materials, which are easily available, and work should be carried out under a fume hood. An external set up including air valves, air compressor and vacuum pump is necessary to activate the mo…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by the EC within the framework of the STIFF-FLOP FP7-ICT-2011.2.1 European Project (#287728).

Materials

Ecoflex 00-50 Trial Kit SmoothOn Used for the fabrication of the soft unit, combining equal amounts of liquid parts A (the base) and B (the catalyst)
Latex Antichità Belsito Used for the fabrication of the granular jamming membrane
Peroxide-Cured Silicone Tubing Cole Parmer T-06411-59 Used for actuating the chambers and applying vacuum
PET expandable braided sleeving RS 408-249 Used for the fabrication of the external braided sheath
Silicone Rubber Momentive 127374 Used to fix the actuation tubes to the module
Parafilm Cole Parmer EW-06720-40 Used to fix the latex membrane to the vacuum tube
Fume hood Secuflow Groupe Waldner Working space
Precision scale KERN EW Used to weight silicone, latex and coffee powder
Oven/degasser Heraeus Used to degass the silicone and reduce its cure time
Vacuum pump DVP Vacuum Technology Used to apply vacuum to the latex membrane

References

  1. Scott, D. J., et al. Completely transvaginal NOTES cholecystectomy using magnetically anchored instruments. Surgical Endoscopy. 21, 2308-2316 (2007).
  2. Vitiello, V., Lee, S., Cundy, T., Yang, G. Emerging Robotic Platforms for Minimally Invasive Surgery. IEEE Reviews in Biomedical Engineering. 6, 111-126 (2013).
  3. Vyas, L., Aquino, D., Kuo, C. -. H., Dai, J. S., Dasgupta, P. Flexible Robotics. BJU International. 107, 187-189 (2011).
  4. Degani, A., Choset, H., Wolf, A., Zenati, M. A. Highly articulated robotic probe for minimally invasive surgery. Proceedings of IEEE International Conference on Robotics and Automation. , 4167-4172 (2006).
  5. Bajo, A., Dharamsi, L. M., Netterville, J. L., Garrett, C. G., Simaan, N. Robotic-assisted micro-surgery of the throat: The trans-nasal approach. , 232-238 (2013).
  6. Burgner, J., Swaney, P. J., Lathrop, R. A., Weaver, K. D., Webster, R. J. Debulking From Within: A Robotic Steerable Cannula for Intracerebral Hemorrhage Evacuation. IEEE Transactions on Biomedical Engineering. 60, 2567-2575 (2013).
  7. Tortora, G., Ranzani, T., De Falco, I., Dario, P., Menciassi, A. A Miniature Robot for Retraction Tasks under Vision Assistance in Minimally Invasive Surgery. Robotics. 3, 70-82 (2014).
  8. Laschi, C., Cianchetti, M. Soft Robotics: new perspectives for robot bodyware and control. Frontiers in Bioengineering and Biotechnology. 2, (2014).
  9. Loeve, A., Breedveld, P., Dankelman, J. Scopes too flexible…and too stiff. Pulse, IEEE. 1, 26-41 (2010).
  10. Cianchetti, M., Follador, M., Mazzolai, B., Dario, P., Laschi, C. Design and development of a soft robotic octopus arm exploiting embodied intelligence. , 5271-5276 (2012).
  11. Smith, K., Kier, W. M. Trunks, tongues, and tentacles: Moving with skeletons of muscle. American Scientist. 77, 28-35 (1989).
  12. Walker, I. Some issues in creating “invertebrate” robots. , (2000).
  13. McMahan, W., Jones, B., Walker, I. Design and implementation of a multi-section continuum robot: Air-octor. IEEE/RSJ International Conference on Intelligent Robots and Systems. , 2578-2585 (2005).
  14. Laschi, C., Mazzolai, B., Cianchetti, M., Margheri, L., Follador, M., Dario, P. A Soft Robot Arm Inspired by the Octopus. Advanced Robotics (Special Issue on Soft Robotics). 26, 709-727 (2012).
  15. Chianchetti, M., et al. Soft robotics technologies to address shortcomings in today’s minimally invasive surgery: the STIFF-FLOP approach. Soft Robotics. 1, 122-131 (2014).
  16. Cheng, N. G., et al. Design and Analysis of a Robust, Low-cost, Highly Articulated manipulator enabled by jamming of granular media. , 4328-4333 (2012).
  17. Cianchetti, M., Ranzani, T., Gerboni, G., De Falco, I., Laschi, C., Menciassi, A. STIFF-FLOP Surgical Manipulator: mechanical design and experimental characterization of the single module. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS. , 3576-3581 (2013).
  18. De Falco, I., Cianchetti, M., Menciassi, A. A soft and controllable stiffness manipulator for minimally invasive surgery: preliminary characterization of the modular design). Proceedings of 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). , (2014).
  19. De Falco, I., Cianchetti, M., Menciassi, A. STIFF-FLOP surgical manipulator: design and preliminary motion evaluation). Proceedings of 4th WorkShop on Computer/Robot Assisted Surgery (CRAS). , 131-134 (2014).
check_url/53118?article_type=t

Play Video

Cite This Article
De Falco, I., Gerboni, G., Cianchetti, M., Menciassi, A. Design and Fabrication of an Elastomeric Unit for Soft Modular Robots in Minimally Invasive Surgery. J. Vis. Exp. (105), e53118, doi:10.3791/53118 (2015).

View Video