Summary

使用可摄取遥测温度丸,以评估胃肠道温度在练习

Published: October 07, 2015
doi:

Summary

This study describes an accurate, reliable and non-invasive technique to continuously measure gastrointestinal temperature during exercise. The ingestible telemetric temperature pill is suitable to measure gastrointestinal temperature in laboratory settings as well as in field based settings.

Abstract

Exercise results in an increase in core body temperature (Tc), which may reduce exercise performance and eventually can lead to the development of heat-related disorders. Therefore, accurate measurement of Tc during exercise is of great importance, especially in athletes who have to perform in challenging ambient conditions. In the current literature a number of methods have been described to measure the Tc (esophageal, external tympanic membrane, mouth or rectum). However, these methods are suboptimal to measure Tc during exercise since they are invasive, have a slow response or are influenced by environmental conditions. Studies described the use of an ingestible telemetric temperature pill as a reliable and valid method to assess gastrointestinal temperature (Tgi), which is a representative measurement of Tc. Therefore, the goal of this study was to provide a detailed description of the measurement of Tgi using an ingestible telemetric temperature pill. This study addresses important methodological factors that must be taken into account for an accurate measurement. It is recommended to read the instructions carefully in order to ensure that the ingestible telemetric temperature pill is a reliable method to assess Tgi at rest and during exercise.

Introduction

基材的过程中肌肉收缩,必要的氧化进行锻炼和体力活动,因为只有20%是用于肌肉的力量1重要的影响,我们的体温调节系统,而大部分能量被释放的热量(80%)2,3。因此,身体活动和运动期间升高的代谢产热典型地超过了热耗散能力4,5,从而增加在芯体温度(Tc)。因此,将T上升到高于下丘脑设定点,其被定义为热疗6,甚至可能导致一个衰减的运动性能5,7,8和/或热相关病症4,6的发展。由于这个原因,在长时间的运动,特别是在剧烈的环境条件来精确测量Tc为重要。

文献描述了一个理想的方法来衡量锝应:1)容易的应用程序licable,2)不受到环境条件有所偏差,3)具有高时间分辨率的快速监测变化在Tc和4)具有与检测的微小变化的能力(Δ0.1℃)在核心体温9,10。不同方法的概述测量锝是由国际标准化组织(ISO 9886)11中给出 。有人说,食管温度在左心房的水平提供了中央血液温度最接近的协议,而这项措施是能够快速检测温度12(未成年人)的变化。尽管食管温度测量值通常被认为是黄金标准录制TC,其侵入性限制了实际使用这种方法。替代措施,以监测锝依靠外部鼓膜,口腔或直肠12温度记录。这些测量点不是最佳的衡量TC,由于其侵入性的性格,methodolog的iCal困难和/或环境状况9,12-14(表1)的电势偏压。这凸显了需要探索替代战略,以监测(变化)锝。

以前的研究已经描述了使用可摄入遥测温度丸以测量Tgi为由,它为Tc 9,15的代表估计的易适用,可靠和有效的方法。另一个重要的是,利用温度丸的是适合在基于场的情况下,这是非常重要的,因为在锝运动诱发的升高一般较高外地比实验室设置16。目前,该温度丸能够为±0.1℃,这使得这种技术非常适合的锻炼事件或重要的比赛期间测量所述Tgi为由精度测量Tgi为由每隔10秒。另外,在一项研究Stevens等人17。如果表明遥测温度丸也可以用于监测胃内温度。可摄取的温度丸首先于1961年18协作描述,并进一步发展在美国约翰霍普金斯大学(巴尔的摩,美国)与美国航空航天局的应用物理实验室。其结果是一个20×10毫米的胶囊用遥测系统,微型电池,石英晶体的温度传感器。水晶传感器振动在频率相对于周围物质的温度的。该温度的无线电信号通过身体,这可以通过一个外部记录器图1)来测量发射。每个温度丸具有唯一的序列和校准号,它可以用来由记录器转换的无线电信号,并测量相应Tgi为由。

一个小的磁条附着到温度药丸,其中停用电池外部。当这个磁条被删除,丸是ACTI氧基团立即开始测量锝( 图2)。住处和他的同事,19使用了六个不同的技术(胃肠道,直肠,听觉,时间的,轴向和前额)来衡量锝,与直肠温度设定为基准值。他们证明,锝随温度丸胃肠测量是表示与参考锝一致的唯一技术。他人调查Tgi为由和直肠温度之间的关系,并显示出一个小而显著偏压范围为0.07℃至0.20℃下9,15,20,21。尽管研究之间的方向和偏压的大小不同,协议的布兰德和Altman 95%限分别为±0.4℃,这是可以接受的9,22。此外,在审查Byrne9 Tgi为由与直肠和食管温度(黄金标准)作为用于锝的量度相比较。他们证明,Tgi为由测量与TEmperature丸是一种基于肠和食道温度之间的良好的协议锝一个有效的措施。此外,协议中的95%布兰德和奥特曼的限制被限制在±0.4°C 22,虽然没有显著偏压两次测量9,20,21之间发现。这些结果表明,Tgi为由为锝一个有效的措施。

一个良好的TC / Tgi为由测量技术的另一个重要方面是高时间分辨率迅速监视变化锝。以前的研究已经表明,随着温度的丸测定的Tgi为由响应更慢的变化锝相比食管测量15,20,23,其可以由于食道的低热容量和接近心脏10进行说明。在食管温度测量,该热敏电阻放置在左心房10的水平。在这个水平上,肺动脉和食道是在接触和等温24,刺激快速响应时间上的变化,在食管测量温度。与此相反,相比于食道肠和直肠较少灌注,导致在测量温度变化在这些解剖位置的延迟。但是,摄取遥测温度丸具有±0.1℃的精确度,并且能够测量Tgi为由每隔10秒。先前的研究报告说,核心体温上升的最大值为1℃,每5分钟,如果没有热量的运动25中删除。因此,温度丸的时间分辨率是适于测量运动时的变化Tgi为由。基于这些发现,可以得出结论,该温度丸是可靠和有效的技术来测量Tgi为由。尽管在大量的研究,关于如何使用丸缺少温度的清晰描述的使用遥测温度丸。

因此,T他本研究的目的是提供测量协议的使用可摄取遥测温度丸的详细描述。其次,遥测温度丸在两个不同的研究的协议的应用被描述,在其中的横截面设计(测量用不同的记录器,每5公里)和协议,连续记录Tgi为由在个人使用。

Protocol

在下一节中描述的步骤均符合并通过Radboud大学医学中心的奈梅亨,荷兰的医学伦理委员会的认可。据我们所知,目前可用于研究人员摄取的温度丸3种不同的商业系统。可摄取温度药丸的用户手册是特定品牌(表的具体材料),但所有的系统都适合测量期间运动和静止条件下进行。 1,排除标准和学科教学询问对象以书面或口头形式的排除标准使用遥测温度丸:1)体?…

Representative Results

从我们以前的工作证明了方法的代表性结果列于下一部分,在其中的横截面( 图3A)和一个连续测量(图3B)的一个例子给出。 Tgi为由的横断面测量从横截面的测量数据的一例示于图3A。获得基准Tgi为由后,受试者走30公里在自己选择的步伐。在运动过程中的Tgi为由整理30公里走长征后测得的每5公里以及?…

Discussion

可摄取遥测温度丸必须提供Tgi为由连续,有效的和非侵入性测量的能力。此外,温度丸的优点是,一旦摄入的事实,受试者不知道在体内或该测量完成的药丸的存在。因此,这种方法是在静止的条件以及运动,为研究参与者最小负担时容易适用,且可在现场和实验室设置,因此可以使用。另一个优点是能够测量大组受试者仅具有单个记录器的可能性。

以确保Tgi为由与摄取丸?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by STW (12864, C.C.W.G.B) and the Netherlands Organization for Scientific Research (Rubicon Grant 825.12.016, T.M.H.E).

Materials

CorTemp data recorder CorTemp system, HQ Inc., Florida, USA Not applicable http://www.hqinc.net/cortemp-data-recorder/
Cortemp ingestible telemetric temperature pill CorTemp system, HQ Inc., Florida, USA HT150002 http://www.hqinc.net/cortemp-sensor-2/
CorTrack II software (Data processing for a PC only) CorTemp system, HQ Inc., Florida, USA Not applicable http://www.hqinc.net/cortrack-ii-data-graphing-software/

References

  1. Hawley, J. A., Hargreaves, M., Joyner, M. J., Zierath, J. R. Integrative Biology of Exercise. Cell. 159, 738-749 (2014).
  2. American College of Sports Medicine. American College of Sports Medicine position stand. Exercise and fluid replacement. Med Sci Sports Exerc. 39, 377-390 (2007).
  3. Cheuvront, S. N., Haymes, E. M. Thermoregulation and marathon running: biological and environmental influences. Sports Med. 31, 743-762 (2001).
  4. Kenefick, R. W., Cheuvront, S. N., Sawka, M. N. Thermoregulatory function during the marathon. Sports Med. 37, 312-315 (2007).
  5. Tatterson, A. J., Hahn, A. G., Martin, D. T., Febbraio, M. A. Effects of heat stress on physiological responses and exercise performance in elite cyclists. J Sci Med Sport. 3, 186-193 (2000).
  6. Bouchama, A., Knochel, J. P. Heat stroke. N Engl J Med. 346, (1978).
  7. Galloway, S. D., Maughan, R. J. Effects of ambient temperature on the capacity to perform prolonged cycle exercise in man. Med Sci Sports Exerc. 29, 1240-1249 (1997).
  8. Hargreaves, M. Physiological limits to exercise performance in the heat. J Sci Med Sport. 11, 66-71 (2008).
  9. Byrne, C., Lim, C. L. The ingestible telemetric body core temperature sensor: a review of validity and exercise applications. Br J Sports Med. 41, 126-133 (2007).
  10. Sawka, M. N., Wenger, C., Pandolf, K. B. . Human performance physiology and environmental medicine at terrestrial extremes. , 97-151 (1988).
  11. . . Ergonomics — Evaluation of thermal strain by physiological measurements. , (2004).
  12. Blatteis, C. M., Blatteis, C. M. . Physiology and pathophysiology of temperature regulation. , 273-279 (1998).
  13. Bagley, J. R., et al. Validity of field expedient devices to assess core temperature during exercise in the cold. Aviat Space Environ Med. 82, 1098-1103 (2011).
  14. Livingstone, S. D., Grayson, J., Frim, J., Allen, C. L., Limmer, R. E. Effect of Cold-Exposure on Various Sites of Core Temperature-Measurements. J Appl Physiol (1985). 54, 1025-1031 (1983).
  15. Gant, N., Atkinson, G., Williams, C. The validity and reliability of intestinal temperature during intermittent running. Med Sci Sports Exerc. 38, 1926-1931 (2006).
  16. Sawka, M. N., et al. Physiologic tolerance to uncompensable heat: intermittent exercise, field vs laboratory. Med Sci Sports Exerc. 33, 422-430 (2001).
  17. Stevens, C. J., Dascombe, B., Boyko, A., Sculley, D., Callister, R. Ice slurry ingestion during cycling improves Olympic distance triathlon performance in the heat. J Sports Sci. 31, 1271-1279 (2013).
  18. Wolff, H. S. The radio pill. New Science. 12, 419-421 (1961).
  19. Casa, D. J., et al. Validity of devices that assess body temperature during outdoor exercise in the heat. J Athl Train. 42, 333-342 (2007).
  20. Kolka, M. A., Quigley, M. D., Blanchard, L. A., Toyota, D. A., Stephenson, L. A. Validation of a Temperature Telemetry System during Moderate and Strenuous Exercise. J Therm Biol. 18, 203-210 (1993).
  21. Lee, S. M., Williams, W. J., Schneider, S. M. . Core temperature measurement during submaximal exercise: esophageal, rectal, and intestinal temperatures. , (2000).
  22. Bland, J. M., Altman, D. G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1, 307-310 (1986).
  23. Lim, C. L., Byrne, C., Lee, J. K. Human thermoregulation and measurement of body temperature in exercise and clinical settings. Ann Acad Med Singapore. 37, 347-353 (2008).
  24. Brengelmann, G. L., Shiraki, K., Yousef, M. K. . Man in a Stressful Environment: Thermal and Work Physiology. , 5-22 (1987).
  25. American College of Sports Medicine. American College of Sports Medicine position stand. Exertional heat illness during training and competition. Med Sci Sports Exerc. 39, 556-572 (2007).
  26. Easton, C., Fudge, B. W., Pitsladis, Y. P. Rectal, telemetry pill and tympanic membrane thermometry during exercise heat stress. J Therm Biol. 32, 78-86 (2007).
  27. Moran, D. S., Mendal, L. Core temperature measurement: methods and current insights. Sports Med. 32, 879-885 (2002).
  28. Ganio, M. S., et al. Validity and reliability of devices that assess body temperature during indoor exercise in the heat. J Athl Train. 44, 124-135 (2009).
  29. Kolka, M. A., Levine, L., Stephenson, L. A. Use of an ingestible telemetry sensor to measure core temperature under chemical protective clothing. J Therm Biol. 22, 343-349 (1997).
  30. Brien, C., Hoyt, R. W., Buller, M. J., Castellani, J. W., Young, A. J. Telemetry pill measurement of core temperature in humans during active heating and cooling. Med Sci Sports Exerc. 30, 468-472 (1998).
  31. Wilkinson, D. M., Carter, J. M., Richmond, V. L., Blacker, S. D., Rayson, M. P. The effect of cool water ingestion on gastrointestinal pill temperature. Med Sci Sports Exerc. 40, 523-528 (2008).
  32. Sparling, P. B., Snow, T. K., Millardstafford, M. L. Monitoring Core Temperature during Exercise – Ingestible Sensor Vs Rectal Thermistor. Aviat Space Environ Med. 64, 760-763 (1993).
  33. Roach, G. D. S. C., Darwent, D., Kannaway, D. J., Furguson, S. A. Lost in transit: The journey of ingestible temperature sensors through the human digestive tract. Ergonomia. 32, 49-61 (2010).
  34. McKenzie, J. E., Osgood, D. W. Validation of a new telemetric core temperature monitor. J Therm Biol. 29, 605-611 (2004).
  35. Palit, S., Lunniss, P. J., Scott, S. M. The physiology of human defecation. Dig Dis Sci. 57, 1445-1464 (2012).
  36. Chien, L. Y., Liou, Y. M., Chang, P. Low defaecation frequency in Taiwanese adolescents: association with dietary intake, physical activity and sedentary behaviour. J Paediatr Child Health. 47, 381-386 (2011).
check_url/53258?article_type=t

Play Video

Cite This Article
Bongers, C. C., Hopman, M. T., Eijsvogels, T. M. Using an Ingestible Telemetric Temperature Pill to Assess Gastrointestinal Temperature During Exercise. J. Vis. Exp. (104), e53258, doi:10.3791/53258 (2015).

View Video