Summary

Sintesi layer-by-layer e di trasferimento delle Freestanding coniugati microporosi Polymer nanomembrane

Published: December 15, 2015
doi:

Summary

In this paper we describe the interfacial synthesis of conjugated microporous polymers (CMP) on sacrificial substrates, and the dissolution of the substrate for the preparation of freestanding CMP nanomembranes. In addition, we will describe how the fragile nanomembranes can be transferred to other substrates.

Abstract

CMP come grandi materiali Superficie hanno suscitato crescente interesse recente, a causa della loro elevata variabilità nella incorporazione di gruppi funzionali in combinazione con loro eccezionale stabilità termica e chimica e basse densità. Tuttavia, la loro natura insolubile causa problemi nella loro lavorazione poiché le tecniche normalmente applicate come rivestimento a rotazione non sono disponibili. Specialmente per le applicazioni di membrana, in cui il trattamento di CMP come film sottili è desiderabile, i problemi di elaborazione hanno ostacolato la loro applicazione commerciale.

Qui si descrive la sintesi interfacciale di film sottili su substrati funzionalizzati CMP tramite layer-by-layer (LBL) sintesi molecolare. Questo processo consente di ottenere film con spessore desiderato e composizione e gradienti di composizione persino desiderati.

L'uso di supporti sacrificali permette la preparazione di membrane autoportanti mediante dissoluzione del supporto dopola sintesi. Per gestire tali membrane autoportanti ultrasottili di protezione con rivestimenti sacrificali ha mostrato grande promessa, per evitare la rottura delle nanomembrane. Per trasferire i nanomembrane al substrato desiderato, le membrane sono rivestite upfloated all'interfaccia aria-liquido e quindi trasferiti tramite dip coating.

Introduction

The preparation of ultra-thin polymer membranes is of high interest for applications in gas separation and nanofiltration. Challenges in the synthesis are represented by (a) the control of the membrane thickness and the homogeneity and (b) transfer of such fragile membranes. To overcome challenge (a), molecular layer-by-layer synthesis1 has shown great promise in controlling the thickness and homogeneity of thin films grown at the solid-liquid interface.2,3 Controlling the number of layers linearly controls the film thickness. The l-b-l method has been successfully used to fabricate surface mounted metal organic frameworks (SURMOFs),4-7 also the synthesis of thin polymer films via l-b-l reaction of polymer chains was demonstrated.8 The challenge (b) concerns the handling of these ultra-thin membranes. To avoid rupture or wrinkling of the nanomembranes sacrificial supports of coatings have shown great promise. 9

Here we will present a detailed protocol for synthesis of conjugated microporous polymer (CMP)10-13 thin films through sequential addition of the molecular building blocks, with desired thickness and composition. The preparation of free-standing CMP nanomembranes is achieved by using a sacrificial support. To handle and transfer the CMP nanomembranes to other supports we will describe a simple protocol to protect the membranes with sacrificial coatings and their upfloating to the liquid air interface and subsequent transfer using dip-coating.

Protocol

1. Sintesi di CMP film sottili attraverso l'aggiunta sequenziale Auto-assemblati monostrato (SAM) funzionalizzazione di oro su mica. Preparare la soluzione 1 mM di 11-thioacetyl-undecano acid-propargyl ammide 14 in etanolo (SAM-soluzione). Miscelare con bagno a ultrasuoni fino a soluzione è limpida. Proteggere la bottiglia dalla luce utilizzando un foglio di alluminio. Ottenere l'oro rivestite mica wafer sotto argon. Dopo il ritiro dal contenitore immergere il waf…

Representative Results

Le membrane sono caratterizzati mediante spettroscopia di assorbimento infrarosso riflessione (IRRAS). 16 Figura 4 mostra IRRA-spettri da un CMP-membrana trasferito ad un wafer oro. Bande tipiche vibrazioni della dorsale aromatico sono a 1,605 cm -1, 1.515 cm -1 e 1.412 cm -1. Reagiti gruppi alchini e azide può essere osservato da bande caratteristici a 2.125 cm -1 e 1.227 cm -1. La Figura 5 mostra una i…

Discussion

Per la sintesi del CMP film la soluzione del catalizzatore deve essere fresco. Un catalizzatore rotto (cioè, ossidato) è indicato da una colorazione blu della soluzione. La soluzione fresca è incolore.

Un punto cruciale è per tagliare i bordi del substrato di mica dopo spin coating PMMA. Anche difetti del substrato deve essere tagliato, cioè, ogni punto fosse il PMMA può venire in contatto con il substrato di mica, a causa di uno strato di oro mancante. Altrimenti lo …

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors have no acknowledgements.

Materials

Acetone VWR BDH Prolabo 20066.330 AnalR NORMAPUR
Potassium iodide VWR BDH Prolabo 26846.292 AnalR NORMAPUR
Ethyl acetate VWR BDH Prolabo 23882.321 AnalR NORMAPUR
Tetrahydrofurane (THF) VWR BDH Prolabo 28559.320 HiPerSolv CHROMANORM
THF waterfree Merck Millipore 1.08107.1001 SeccoSolv
Iodine Sigma-Aldrich 20,777-2
Tetrakis(acetonitrile)copper(I)hexafluoro-phosphate Sigma-Aldrich 346276-5G
Poly(methyl methacrylate) 996 kDa (PMMA) Sigma-Aldrich 182265-25G
1.1.1.1 Methanetetrayltetrakis(4-azidobenzene) (TPM-azide) provided by AK Prof. Bräse. Institute of organic chemistry, Karlsruhe Institute of Technology. Synthesized according to9
1.1.1.1 Methanetetrayltetrakis(4-ethinylenebenzene) (TPM-alkyne) provided by AK Prof. Bräse. Institute of organic chemistry, Karlsruhe Institute of Technology. Synthesized according to9
11-thioacetyl-undecaneacid propargylamide provided by AK Prof. Bräse. Institute of organic chemistry, Karlsruhe Institute of Technology. Synthesized according to8
gold/titan coated silicium-wafer Georg Albert PVD, 76857 Silz, Germany
gold coated mica Georg Albert PVD, 76857 Silz, Germany

References

  1. Lindemann, P., et al. Preparation of Freestanding Conjugated Microporous Polymer Nanomembranes for Gas Separation. Chemistry of Materials. 26 (24), 7193-71 (2014).
  2. Kim, M., et al. Preparation of Ultrathin Films of Molecular Networks through Layer-by-Layer Cross-Linking Polymerization of Tetrafunctional Monomers. Macromolecules. 44 (18), 7092-7095 (2011).
  3. Vonhören, B., et al. Ultrafast Layer-by-Layer Assembly of Thin Organic Films Based on Triazolinedione Click Chemistry. ACS Macro Letters. 4 (3), 331-334 (2015).
  4. Shekhah, O., et al. Step-by-Step Route for the Synthesis of Metal−Organic Frameworks. Journal of the American Chemical Society. 129 (49), 15118-15119 (2007).
  5. Shekhah, O., Wang, H., Zacher, D., Fischer, R. A., Wöll, C. Growth Mechanism of Metal–Organic Frameworks: Insights into the Nucleation by Employing a Step-by-Step Route. Angewandte Chemie International Edition. 48 (27), 5038-5041 (2009).
  6. Shekhah, O., Liu, J., Fischer, R. A., Wöll, C. MOF thin films: existing and future applications. Chemical Society Reviews. 40 (2), 1081-1106 (2011).
  7. Liu, J., et al. Deposition of Metal-Organic Frameworks by Liquid-Phase Epitaxy: The Influence of Substrate Functional Group Density on Film Orientation. Materials. 5 (9), 1581-1592 (2012).
  8. Such, G. K., Quinn, J. F., Quinn, A., Tjipto, E., Caruso, F. Assembly of Ultrathin Polymer Multilayer Films by Click Chemistry. Journal of the American Chemical Society. 128 (29), 9318-9319 (2006).
  9. Ai, M., et al. Carbon Nanomembranes (CNMs) Supported by Polymer: Mechanics and Gas Permeation. Advanced Materials. 26 (21), 3421-3426 (2014).
  10. Jiang, J. -. X., Cooper, A. I. in Functional Metal-Organic Frameworks: Gas Storage, Separation and Catalysis. Topics in Current Chemistry. (ed Martin Schröder) Ch. 293, 1-33 (2010).
  11. Dawson, R., Cooper, A. I., Adams, D. J. Nanoporous organic polymer networks. Progress in Polymer Science. 37 (4), 530-563 (2012).
  12. Muller, T., Bräse, S. Click Chemistry Finds Its Way into Covalent Porous Organic Materials. Angewandte Chemie International Edition. 50 (50), 11844-11845 (2011).
  13. Tsotsalas, M., Addicoat, M. A. Covalently linked organic networks. Frontiers in Materials. 2, (2015).
  14. Kleinert, M., Winkler, T., Terfort, A., Lindhorst, T. K. A modular approach for the construction and modification of glyco-SAMs utilizing 1,3-dipolar cycloaddition. Organic & Biomolecular Chemistry. 6 (12), 2118-2132 (2008).
  15. Plietzsch, O., et al. Four-fold click reactions: Generation of tetrahedral methane- and adamantane-based building blocks for higher-order molecular assemblies. Organic & Biomolecular Chemistry. 7, (2009).
  16. Greenler, R. G. Infrared Study of Adsorbed Molecules on Metal Surfaces by Reflection Techniques. The Journal of Chemical Physics. 44 (1), (1966).
check_url/53324?article_type=t

Play Video

Cite This Article
Lindemann, P., Träutlein, Y., Wöll, C., Tsotsalas, M. Layer-by-layer Synthesis and Transfer of Freestanding Conjugated Microporous Polymer Nanomembranes. J. Vis. Exp. (106), e53324, doi:10.3791/53324 (2015).

View Video