Summary

类器官的模型传染病:人类的文化与小鼠胃组织体与幽门螺杆菌的显微注射

Published: November 12, 2015
doi:

Summary

Stem cell derived cultures harbor tremendous potential to model infectious diseases. Here, the culture of mouse and human gastric organoids derived from adult stem cells is described. The organoids are microinjected with the gastric pathogen Helicobacter pylori.

Abstract

Recently infection biologists have employed stem cell derived cultures to answer the need for new and better models to study host-pathogen interactions. Three cellular sources have been used: Embryonic stem cells (ESC), induced pluripotent stem cells (iPSC) or adult stem cells. Here, culture of mouse and human gastric organoids derived from adult stem cells is described and used for infection with the gastric pathogen Helicobacter pylori. Human gastric glands are isolated from resection material, seeded in a basement matrix and embedded in medium containing growth factors epidermal growth factor (EGF), R-spondin, Noggin, Wnt, fibroblast growth factor (FGF) 10, gastrin and transforming growth factor (TGF) beta inhibitor. In these conditions, gastric glands grow into 3-dimensional organoids containing 4 lineages of the stomach. The organoids expand indefinitely and can be frozen and thawed similarly as cell lines. For infection studies, bacteria are microinjected into the lumen of the organoids. Infected organoids are processed for imaging. The described methods can be adapted to other organoids and infections with other bacteria, viruses or parasites. This allows the study of infection-induced changes in primary cells.

Introduction

病原体的研究依赖于适当的模型系统来模拟体内的感染。对于一些感染剂,适当的模型系统缺乏而一些使用的系统是远非最佳。一个例子是在胃幽门螺杆菌幽门螺杆菌 ),这是因果相关的胃癌的发展。然而,在不存在一个更合适的细胞培养体系,许多研究旨在分析癌症发展使用癌细胞系的分子机制,这代表了癌变级联的端点。伯,非转化细胞。将这些研究更好的模型。然而,原代细胞仅可从少数献血者的,并且不能在较长的时间周期中培养。近年来,干细胞研究取得了显著的进步,为原代细胞培养感染生物学研究新的来源。

从文化3干细胞来源已被用于:胚胎干细胞(ESC),诱导多能干细胞(IPSC)或成体干细胞。它们已被用于模拟感染的病毒,如巨细胞病毒1,2-或丙型肝炎病毒3 – 7,寄生虫,如恶性疟原虫 8或 弓形虫 9,和细菌,如Bacterioides thetaiotaomicron 10肠道沙门氏菌 11。最近,一些方法已经被发布到感染H.模型幽门螺杆菌与来自ESC键或iPS细胞12,小鼠成体干细胞21,22或人类成体干细胞衍生的13类器官– 15。

类器官培养物从成体干细胞的发育源自研究,其中单个干细胞从鼠肠上皮分离接种到3维矩阵和嵌入在模仿含有EGF的有丝分裂原,R-脊椎蛋白的肠干细胞的环境,以提高Wnt信号和头蛋白抑制骨形态发生蛋白(BMP)信令16培养基。值得注意的是这些培养不需要共培养间充质细胞。在这些条件下,干细胞增殖并形成小的结构与结构域窝藏肠隐窝的细胞,以及包含肠绒毛的细胞结构域。的组织体从而自我组织以模拟体内情况 。今天,许多鼠和人性化的组织的成体干细胞可以在体外和生长自组织成类器官类似于在体内对应物,如小肠和结肠17,13,18,19,20肝,胰腺和21前列腺22。

在这里,我们提供了一个视频协议,以培养小鼠和人胃癌组织体的成体干CELLS和microinject它们与H.幽门螺旋杆菌 。该协议是基于以往的报告13,18。该方法可适于用于培养和感染其他类器官培养物如肠组织体。

Protocol

1.建立胃化培养的注意:此协议可用于从鼠或人组织胃腺的隔离。它建议使用约1平方厘米的组织。人体组织可以从胃切除术或活组织检查获得。 材料的制备注意:使用地下室矩阵是基底膜。置于冰上地下室矩阵在任何时候。存储地下室基质在-20℃并在使用前解冻冰上。基础培养基是指高级的DMEM / F12补充有HEPES;适当的谷氨酰胺源如Glutamax的和适当的抗生素,如1×Pri…

Representative Results

该协议允许胃腺(图2)的隔离。腺接种入地下室矩阵,它凝固成内井降,提供一个三维框架富含层粘连蛋白和胶原蛋白,以允许腺体生长成组织体( 图3)。类器官通常开始为小囊肿和内12日至16日,它们扩展成球形的直径为50-300微米(图4)。有些组织体将留囊肿,有的会发展小buddings。后者通常是一个健康的生长培养的标志。在这个协议中一个24孔板的一个?…

Discussion

This protocol describes the use of ever-expanding, untransformed primary organoids from adult stem cells for infection biology. Critical steps are i) the isolation of viable glands, ii) expansion of organoids and iii) the microinjection. Below are some suggestions for modifications, troubleshooting and technical considerations.

Compared to other isolation methods, which use vigorous shaking or pipetting to release glands and can be equally successful, the technique presented here has the adva…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by EU Marie Curie Fellowship (EU/300686-InfO) to S.B. and a Research Prize from the United European Gastroenterology Foundation to H.C. We would like to thank Harry Begthel, Jeroen Korving and the Hubrecht Imaging Center for technical assistance, Meritxell Huch for help with initial organoid culture and Yana Zavros for discussion.

Materials

Medium
HEPES Invitrogen 15630-056
Advanced DMEM/F12 Invitrogen 12634-028
Matrigel, GFR, phenol free BD 356231
GlutaMAX Invitrogen 35050-079 Stock concentration 200 mM, final concentration 2 mM
B27 Invitrogen 17504-044 Stock concentration 50 x, final concentration 1x
N-Acetylcysteine Sigma-Aldrich A9165-5G Stock concentration 500 mM, final concentration 1 mM
Murine recombinant EGF Invitrogen PMG8043 Stock concentration 500 µg/mL, final concentration 50 ng/mL
Human recombinant FGF10 Peprotech 100-26 Stock concentration 100 µg/mL, final concentration 200 ng/mL
TGFβi A-83-01 Tocris 2939 Stock concentration 500 µM, final concentration 2 µM 
Nicotinamide Sigma-Aldrich N0636 Stock concentration 1 M, final concentration 10 mM 
[Leu15]-Gastrin Sigma-Aldrich G9145 Stock concentration 100 µM, final concentration 1 nM
RHOKi Y-27632 Sigma-Aldrich Y0503 Stock concentration 10 mM, final concentration 10 µM
Wnt3A conditioned medium Stable cell line generated in the Clevers Lab. Final concentration 50%. Cells can be obtained from Hans Clevers.
R-spondin1 conditioned medium Stable cell line generated in the Kuo Lab. Final concentration 10%. Cell line can be obtained from Calvin Kuo, Stanford.
Noggin conditioned medium Stable cell line generated in the Clevers Lab. Final concentration 10%. Cells can be obtained from Hans Clevers.
R-spondin3 R&D 3500-RS/CF Alternative source for R-spondin. This has been tested on human intestine organoids (1 µg/mL), but not yet on gastric organoids.
Noggin Peprotech 120-10 Alternative source for noggin. This has been tested on human intestine organoids (100 ng/mL), but not yet on gastric organoids.
TrypLE express Life Technologies 12605036 Enzymatic dissociation solution 
CoolCell® Alcohol-Free Cell Freezing Containers biocision BCS-405
Recovery Cell Culture Freezing Medium Invitrogen 12648-010
Antibiotics
Primocin Invivogen ant-pm-1 An antibiotics composition agains bacteria and fungi. It is helpful after initiation of a culture. For long term culture you can switch to other antibiotics or none.
Penicillin/Streptomycin Invitrogen 15140-122 Stock concentration 10000/10000 U/mL, final concentration 100/100 U/mL. Can be used alternatively to Primocin in long term culture.
Other
Tweezers Neolabs 2-1033 Tweezers with fine tips are helpful for the removal of muscle layer from the tissue.
4 Well Multidishes Thermo Scientific 144444 You can use other Multidishes. These were particularly helpful for microinjections because they have a low outer rim and allow more mobility for the manipulator.
Micromanipulator Narishige M-152
Microinjector Narishige IM-5B
Stereomicroscope Leica MZ75
Workbench Clean Air Custom made to fit the stereomicroscope in ML2 condition
Cappillaries Harvard Apparatus GC100T-10 1 mm outer diameter, 0,78 mm inner diameter.
Micropipette Puller Sutter Instruments Flaming Brown Micropipette Puller
anti Cag A antibody Santa Cruz sc-25766

References

  1. Aiuto, L., et al. Human Induced Pluripotent Stem Cell-Derived Models to Investigate Human Cytomegalovirus Infection in Neural Cells. PLoS ONE. 7 (11), e49700 (2012).
  2. Penkert, R. R., Kalejta, R. F. Human Embryonic Stem Cell Lines Model Experimental Human Cytomegalovirus Latency. mBio. 4 (3), e00298-13-e00298-13 (2013).
  3. Roelandt, P., et al. Human pluripotent stem cell-derived hepatocytes support complete replication of hepatitis C virus. J Hepatol. 57 (2), 246-251 (2012).
  4. Schwartz, R. E., Trehan, K., et al. Modeling hepatitis C virus infection using human induced pluripotent stem cells. Proc Natl Acad Sci USA. 109 (7), 2544-2548 (2012).
  5. Shlomai, A., et al. Modeling host interactions with hepatitis B virus using primary and induced pluripotent stem cell-derived hepatocellular systems. Proc Natl Acad Sci USA. 111 (33), 12193-12198 (2014).
  6. Wu, X., et al. Productive Hepatitis C Virus Infection of Stem Cell-Derived Hepatocytes Reveals a Critical Transition to Viral Permissiveness during Differentiation. PLoS Pathogens. 8 (4), e1002617 (2012).
  7. Yoshida, T., et al. Use of human hepatocyte-like cells derived from induced pluripotent stem cells as a model for hepatocytes in hepatitis C virus infection. Biochem Biophys Res Commun. 416 (1-2), 119-124 (2011).
  8. Ng, S., et al. Human iPSC-Derived Hepatocyte-like Cells Support Plasmodium Liver-Stage Infection In Vitro. Stem Cell Report. 4 (2), (2015).
  9. Klotz, C., Aebischer, T., Seeber, F. Stem cell-derived cell cultures and organoids for protozoan parasite propagation and studying host-parasite interaction. Int J Med Microbiol. 302 (4-5), 203-209 (2012).
  10. Engevik, M. A., et al. Loss of NHE3 alters gut microbiota composition and influences Bacteroides thetaiotaomicron growth. AJP: GI. 305 (10), G697-G711 (2013).
  11. Wilson, S. S., Tocchi, A., Holly, M. K., Parks, W. C., Smith, J. G. A small intestinal organoid model of non-invasive enteric pathogen-epithelial cell interactions. Mucosal Immunol. 8 (2), 352-361 (2015).
  12. McCracken, K. W., et al. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature. 516 (7531), 400-404 (2014).
  13. Bartfeld, S., et al. In Vitro Expansion of Human Gastric Epithelial Stem Cells and Their Responses to Bacterial Infection. Gastroenterology. 148 (1), (2014).
  14. Schlaermann, P., Toelle, B., et al. A novel human gastric primary cell culture system for modelling Helicobacter pylori infection in vitro. Gut. , (2014).
  15. Bertaux-Skeirik, N., et al. CD44 Plays a Functional Role in Helicobacter pylori-induced Epithelial Cell Proliferation. PLOS Pathogens. 11 (2), e1004663 (2015).
  16. Sato, T., et al. Single Lgr5 stem cells build crypt villus structures in vitro without a mesenchymal niche. Nature. 459 (7244), 262-265 (2009).
  17. Sato, T., et al. Long-term Expansion of Epithelial Organoids From Human Colon, Adenoma, Adenocarcinoma, and Barrett’s Epithelium. Gastroenterology. 141 (5), 1762-1772 (2011).
  18. Barker, N., et al. Lgr5+ve Stem Cells Drive Self-Renewal in the Stomach and Build Long-Lived Gastric Units In Vitro. Cell Stem Cell. 6 (1), 25-36 (2010).
  19. Huch, M., et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature. 494 (7436), 247-250 (2013).
  20. Huch, M., et al. Long-Term Culture of Genome-Stable Bipotent Stem Cells from Adult Human Liver. Cell. 160 (1-2), 299-312 (2015).
  21. Boj, S. F., et al. Organoid Models of Human and Mouse Ductal Pancreatic Cancer. Cell. 160 (1-2), 324-338 (2015).
  22. Karthaus, W. R., et al. Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell. 159 (1), 163-175 (2014).
  23. Bartfeld, S., et al. High-throughput and single-cell imaging of NF-kappaB oscillations using monoclonal cell lines. BMC cell. 11, 21 (2010).
  24. Blanchard, T. G., Nedrud, J. G. Laboratory Maintenance of Helicobacter Species. Curr Protoc Microbiol. , (2006).
  25. Van Es, J. H., de Geest, N., van de Born, M., Clevers, H., Hassan, B. A. Intestinal stem cells lacking the Math1 tumour suppressor are refractory to Notch inhibitors. Nat Commun. 1 (2), 1-5 (2010).
  26. Andersson-Rolf, A., Fink, J., Mustata, R. C., Koo, B. -. K. A Video Protocol of Retroviral Infection in Primary Intestinal Organoid Culture. J Vis Exp. (90), (2014).
  27. Stange, D. E., Koo, B. -. K., et al. Differentiated Troy+ Chief Cells Act as Reserve Stem Cells to Generate All Lineages of the Stomach Epithelium. Cell. 155 (2), 357-368 (2013).
  28. Van de Wetering, M., Sancho, E., et al. The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell. 111 (2), 241-250 (2002).
  29. Schumacher, M. A., Aihara, E., et al. The use of murine-derived fundic organoids in studies of gastric physiology. Journal Physiol. 593 (8), 1809-1827 (2015).
  30. Schwank, G., Andersson-Rolf, A., Koo, B. -. K., Sasaki, N., Clevers, H. Generation of BAC Transgenic Epithelial Organoids. PLoS ONE. 8 (10), e76871 (2013).
  31. Koo, B. -. K., et al. Controlled gene expression in primary Lgr5 organoid cultures. Nat Meth. 9 (1), 81-83 (2012).
  32. Schwank, G., et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell. 13 (6), 653-658 (2013).
  33. Li, V. S. W., Ng, S. S., et al. Wnt Signaling through Inhibition of β-Catenin Degradation in an Intact Axin1 Complex. Cell. 149 (6), 1245-1256 (2012).
  34. Van de Wetering, M., et al. Prospective derivation of a ‘Living Organoid Biobank’ of colorectal cancer patients. Cell. 161 (4), 933-945 (2015).
check_url/53359?article_type=t

Play Video

Cite This Article
Bartfeld, S., Clevers, H. Organoids as Model for Infectious Diseases: Culture of Human and Murine Stomach Organoids and Microinjection of Helicobacter Pylori. J. Vis. Exp. (105), e53359, doi:10.3791/53359 (2015).

View Video