Summary

侧根诱导系统<em>拟南芥</em>和玉米

Published: January 14, 2016
doi:

Summary

The Lateral Root Inducible System (LRIS) allows for synchronous induction of lateral roots and is presented for Arabidopsis thaliana and maize.

Abstract

Lateral root development contributes significantly to the root system, and hence is crucial for plant growth. The study of lateral root initiation is however tedious, because it occurs only in a few cells inside the root and in an unpredictable manner. To circumvent this problem, a Lateral Root Inducible System (LRIS) has been developed. By treating seedlings consecutively with an auxin transport inhibitor and a synthetic auxin, highly controlled lateral root initiation occurs synchronously in the primary root, allowing abundant sampling of a desired developmental stage. The LRIS has first been developed for Arabidopsis thaliana, but can be applied to other plants as well. Accordingly, it has been adapted for use in maize (Zea mays). A detailed overview of the different steps of the LRIS in both plants is given. The combination of this system with comparative transcriptomics made it possible to identify functional homologs of Arabidopsis lateral root initiation genes in other species as illustrated here for the CYCLIN B1;1 (CYCB1;1) cell cycle gene in maize. Finally, the principles that need to be taken into account when an LRIS is developed for other plant species are discussed.

Introduction

根系统是植物生长的关键,因为它确保锚固的水分吸收和养分从​​土壤。因为根系统的扩展主要是依赖于生产侧根,其起始和形成已被广泛研究。侧根开始在柱鞘细胞的特定子集,称为创始人电池 1。在大多数双子叶植物,如拟南芥 ,这些细胞都位于原生木质部极2,而在单子叶植物,如玉米,它们被发现在韧皮部磁极3。创办人细胞通过增加生长素应答4标记,接着通过特定的细胞周期基因表达例如 细胞周期蛋白B1; 1 / CYCB1; 1),之后,它们经历了第一轮的不对称背斜司5。经过一系列的协调背斜与平周分裂,一侧根原基形成的最终将成为一个一utonomous侧根。的位置和侧根起始定时是但是不可预见的,因为这些事件既不丰富也不同步。这妨碍了使用分子的方法,例如转录研究这一过程。

为了解决这个问题,一个侧根诱导系统(LRIS)已经开发6,7。在这个系统中,幼苗首先用N – 1-naphthylphthalamic酸(NPA),其抑制生长素运输和积累,从而阻断侧根开始8。通过随后转移至苗含有合成植物生长素-1-萘乙酸(NAA)培养基中,整个柱鞘层响应该升高的生长素水平从而大规模诱导侧根启动细胞分裂6。因此,这一制度导致了快速,同步和广泛的侧根灌顶,方便收集富含晚期的特定阶段根样本拉尔根系发育。随后,这些样品可以被用来确定在侧根形成的全基因组表达谱。该LRIS取得了约侧根开始拟南芥和玉米9-13,但需要已经显著的知识,这个系统应用到其他植物物种变得更基因组被测序更加明显,并且有越来越多的兴趣将知识传授给经济的重要种类。

这里, 拟南芥和玉米LRISs的详细方案给出。接着,使用该系统的一个例子是提供,通过说明如何从玉米LRIS获得转录数据可用于识别具有在不同的植物物种侧根发起期间的保守功能功能同系物。最后,指导方针,以优化LRIS其他植物物种提出了建议。

Protocol

1. 拟南芥 LRIS协议注:该文是指“小”或“大”规模的实验。小规模的实验,如标记线的分析和组织学染色6,14,只需要少数样品。大规模的实验,如定量实时定量RT-PCR,微阵列9-11或RNA测序,需要样品的量越大。这样,的〜1000苗每个样品,使用由Vanneste 等人 11的量到根段的解剖后执行微阵列实验。 第1天…

Representative Results

执行侧根启动过程的LRIS中的应用比较转录 在LRIS的一个应用是在侧根形成不同物种的比较和基因表达谱的关系。比较转录方法创建查明参与了不同种类的侧根发育过程中的同源基因的可能性。侧根开始,它由从包含在一个已形成的根轴的细胞的子集形成一个新的器官,是由被子植物共享,以控制它们的根构造的主…

Discussion

拟南芥 LRIS协议,它只能传输已经变得完全在与含NPA生长培养基接触的幼苗是重要的。这确保侧根开始被阻止在整个根长度。为了防止伤人传输过程中的小植株,弯曲钳子的臂能下的幼苗的子叶钩住。转让时,请确保幼苗根在与含NAA琼脂培养基充分接触。这可以通过掠过根在琼脂表面上一个小的距离来实现。这将确保一个有效的同步感应侧根萌生过的总根长。的根源可以种植没有他们的?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors thank Davy Opdenacker for technical assistance and photography. We greatly thank Dr. Annick Bleys for helpful suggestions to improve the manuscript. This work was financed by the Interuniversity Attraction Poles Programme IUAP P7/29 ‘MARS’ from the Belgian Federal Science Policy Office, by the FWO grant G027313N and by the Agency for Innovation by Science and Technology, IWT (IR).

Materials

ARABIDOPSIS LRIS
Seeds
Arabidopsis seeds Col-0 ecotype
Gas sterilization of seeds
micro-centrifuge tubes 1.5 ml SIGMA-ALDRICH 0030 125.215 Eppendorf microtubes 3810X, PCR clean
micro-centrifuge tubes 2 ml SIGMA-ALDRICH 0030 120.094 Eppendorf Safe-Lock microcentrifuge tubes
hydrochloric acid Merck KGaA 1,003,171,000 37% (fuming) for analysis EMSURE ACS,ISO,Reag. Ph Eu
glass desiccator SIGMA-ALDRICH Pyrex
glass beaker
plastic micro-centrifuge tubes box or holder
Bleach sterilization of seeds
ethanol Chem-Lab nv CL00.0505.1000 Ethanol, abs. 100% a.r. dilute to 70%
sodium hypochlorite (NaOCl) Carl Roth 9062.3 12%
Tween 20 SIGMA-ALDRICH P1379
sterile water
Growth medium
Murashige and Skoog salt mixture DUCHEFA Biochemie B.V. M0221-0050
myo-inositol SIGMA-ALDRICH I5125-100G
2-(N-morpholino)ethanesulfonic acid (MES) DUCHEFA Biochemie B.V. M1503.0100
sucrose VWR, Internation LLC 27483.294 D(+)-Sucrose Ph. Eur.
KOH Merck KGaA 1050211000 pellets for analysis (max. 0.002% Na) EMSURE ACS,ISO,Reag. Ph Eur
Plant Tissue Culture Agar LabM Limited MC029
Lateral root induction chemicals
N-1-naphthylphthalamic acid (NPA) DUCHEFA Biochemie B.V. No. N0926.0250 10 µM (Arabidopsis)
1-naphthalene acetic acid (NAA) DUCHEFA Biochemie B.V. No. N0903.0050 10 µM (Arabidopsis)
dimethylsulfoxide (DMSO) SIGMA-ALDRICH 494429-1L
Making a mesh for transfer
nylon mesh Prosep byba Synthetic nylon mesh 20 µm
Sowing and seedling handling
square petri dish plates GOSSELIN BP124-05 12 x 12 cm
50 ml DURAN tubes SIGMA-ALDRICH CLS430304 Corning 50 mL centrifuge tubes
drigalski Carl Roth K732.1
pipette
cut pipette tips Daslab 162001X Universal 200, cut off 5 mm of tip before autoclaving
breathable tape  3M Deutschland GmbH cat. no. 1530-1
tweezers Fiers nv/sa K342.1; K344.1 Dumont tweezers type a nr 5; Dumont tweezers type e nr 7
Growth conditions
growth room 21 °C, continuous light
Materials Company Catalog Comments
MAIZE LRIS
Seeds
Maize kernels B-73
Bleach sterilization of kernels
glass beaker
magnetic stirrer  Fiers nv/sa C267.1
sodium hypochlorite (NaOCl) Carl Roth 9062.3 12%
sterile water
Lateral root induction chemicals
N-1-naphthylphthalamic acid (NPA) DUCHEFA Biochemie B.V. No. N0926.0250 50 µM (maize primary root), 25 µM (maize adventitious root)
1-naphthalene acetic acid (NAA) DUCHEFA Biochemie B.V. No. N0903.0050 50 µM (maize)
dimethylsulfoxide (DMSO) SIGMA-ALDRICH 494429-1L
Sowing and seedling handling
paper hand towels Kimberly-Clark Professional* 6681 SCOTT Hand Towels – Roll / White; sheet size (24 x 46 cm)
seed germination paper Anchor Paper Company 10 X 15 38# seed germination paper
tweezers Fiers nv/sa K342.1; K344.1 Dumont tweezers type a nr 5; Dumont tweezers type e nr 7
250 ml (centrifuge) tubes SCHOTT DURAN 2160136 approx. 5.6 cm diameter and 14.7 cm height 
700 ml tubes DURAN GROUP 213994609 cylinders, round foot tube, D 60  x 250
rack for maize tubes, home made
sterile water
Growth conditions
growth cabinet 27 °C, continuous light, 70% relative humidity

References

  1. Van Norman, J. M., Xuan, W., Beeckman, T., Benfey, P. N. To branch or not to branch: the role of pre-patterning in lateral root formation. Development. 140, 4301-4310 (2013).
  2. Dolan, L., et al. Cellular organisation of the Arabidopsis thaliana root. Development. 119, 71-84 (1993).
  3. Bell, J. K., McCully, M. E. A histological study of lateral root initiation and development in Zea mays. Protoplasma. 70, 179-205 (1970).
  4. Benkova, E., et al. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell. 115, 591-602 (2003).
  5. Beeckman, T., Burssens, S., Inzé, D. The peri-cell-cycle in Arabidopsis. J. Exp. Bot. 52, 403-411 (2001).
  6. Himanen, K., Boucheron, E., Vanneste, S., de Almeida Engler, J., Inzé, D., Beeckman, T. Auxin-mediated cell cycle activation during early lateral root initiation. Plant Cell. 14, 2339-2351 (2002).
  7. Jansen, L., Parizot, B., Beeckman, T. Inducible system for lateral roots in Arabidopsis thaliana and maize. Methods Mol Biol. 959, 149-158 (2013).
  8. Casimiro, I., et al. Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell. 13, 843-852 (2001).
  9. Himanen, K., et al. Transcript profiling of early lateral root initiation. Proc. Natl. Acad. Sci. USA. 101, 5146-5151 (2004).
  10. De Smet, I., et al. Receptor-like kinase ACR4 restricts formative cell divisions in the Arabidopsis root. Science. 322, 594-597 (2008).
  11. Vanneste, S., et al. Cell cycle progression in the pericycle is not sufficient for SOLITARY ROOT/IAA14-mediated lateral root initiation in Arabidopsis thaliana. Plant Cell. 17, 3035-3050 (2005).
  12. De Rybel, B., et al. A role for the root cap in root branching revealed by the non-auxin probe naxillin. Nat. Chem. Biol. 8, 798-805 (2012).
  13. Jansen, L., et al. Comparative transcriptomics as a tool for the identification of root branching genes in maize. Plant Biotechnol. J. 11, 1092-1102 (2013).
  14. Parizot, B., et al. Diarch symmetry of the vascular bundle in Arabidopsis root encompasses the pericycle and is reflected in distich lateral root initiation. Plant Physiol. 146, 140-148 (2008).
  15. Murashige, T., Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15, 473-497 (1962).
  16. Bellini, C., Pacurar, D. I., Perrone, I. Adventitious roots and lateral roots: similarities and differences. Annu Rev Plant Biol. 65, 639-666 (2014).
  17. Grunewald, W., Parizot, B., Inzé, D., Gheysen, G., Beeckman, T. Developmental biology of roots: One common pathway for all angiosperms?. Int. J. Plant Dev. Biol. 1, 212-225 (2007).
  18. Parizot, B., Beeckman, T., Crespi, M. Genomics of root development. Root Genomics and Soil Interactions. , 3-28 (2012).
  19. Bargmann, B. O., Birnbaum, K. D. Fluorescence activated cell sorting of plant protoplasts. Journal of visualized experiments : JoVE. , (2010).
  20. Nakazono, M., Qiu, F., Borsuk, L. A., Schnable, P. S. Laser-capture microdissection, a tool for the global analysis of gene expression in specific plant cell types: identification of genes expressed differentially in epidermal cells or vascular tissues of maize. Plant Cell. 15, 583-596 (2003).
  21. Ludwig, Y., Hochholdinger, F. Laser microdissection of plant cells. Methods Mol Biol. 1080, 249-258 (2014).
  22. Beeckman, T., Engler, G. An easy technique for the clearing of histochemically stained plant tissue. Plant Mol. Biol. Rep. 12, 37-42 (1994).
  23. Ditengou, F. A., et al. Mechanical induction of lateral root initiation in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 105, 18818-18823 (2008).
  24. Lucas, M., Godin, C., Jay-Allemand, C., Laplaze, L. Auxin fluxes in the root apex co-regulate gravitropism and lateral root initiation. J. Exp. Bot. 59, 55-66 (2008).
  25. Wang, S., Taketa, S., Ichii, M., Xu, L., Xia, K., Zhou, X. Lateral root formation in rice (Oryza Sativa. L.): differential effects of indole-3-acetic acid and indole-3-butyric acid. Plant Growth Regul. 41, 41-47 (2003).
  26. Martinez-de la Cruz, E., Garcia-Ramirez, E., Vazquez-Ramos, J. M., Reyes de la Cruz, H., Lopez-Bucio, J. Auxins differentially regulate root system architecture and cell cycle protein levels in maize seedlings. J Plant Physiol. 176, 147-156 (2015).
  27. Beyer, E. M., Morgan, P. W. Effect of ethylene on uptake, distribution, and metabolism of indoleacetic acid-1-14C and -2-14C and naphthaleneacetic acid-1-14C. Plant Physiol. 46, 157-162 (1970).
  28. Delbarre, A., Muller, P., Imhoff, V., Guern, J. Comparison of mechanisms controlling uptake and accumulation of 2,4-dichlorophenoxy acetic acid, naphthalene-1-acetic acid, and indole-3-acetic acid in suspension-cultured tobacco cells. Planta. 198, 532-541 (1996).
  29. Bailey-Serres, J. Microgenomics: genome-scale, cell-specific monitoring of multiple gene regulation tiers. Annu Rev Plant Biol. 64, 293-325 (2013).
  30. Perez-Torres, C. A., et al. Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. Plant Cell. 20, 3258-3272 (2008).
check_url/53481?article_type=t

Play Video

Cite This Article
Crombez, H., Roberts, I., Vangheluwe, N., Motte, H., Jansen, L., Beeckman, T., Parizot, B. Lateral Root Inducible System in Arabidopsis and Maize. J. Vis. Exp. (107), e53481, doi:10.3791/53481 (2016).

View Video