Summary

锂离子纽扣电池的非水电极加工和施工

Published: February 01, 2016
doi:

Summary

Non-aqueous electrode processing is central to the construction of coin cells and the evaluation of new electrode chemistries for lithium-ion batteries. A step-by-step guide to the basic practices needed as an electrochemical engineer working with batteries in an academic experimental setting is furnished.

Abstract

Research into new and improved materials to be utilized in lithium-ion batteries (LIB) necessitates an experimental counterpart to any computational analysis. Testing of lithium-ion batteries in an academic setting has taken on several forms, but at the most basic level lies the coin cell construction. In traditional LIB electrode preparation, a multi-phase slurry composed of active material, binder, and conductive additive is cast out onto a substrate. An electrode disc can then be punched from the dried sheet and used in the construction of a coin cell for electrochemical evaluation. Utilization of the potential of the active material in a battery is critically dependent on the microstructure of the electrode, as an appropriate distribution of the primary components are crucial to ensuring optimal electrical conductivity, porosity, and tortuosity, such that electrochemical and transport interaction is optimized. Processing steps ranging from the combination of dry powder, wet mixing, and drying can all critically affect multi-phase interactions that influence the microstructure formation. Electrochemical probing necessitates the construction of electrodes and coin cells with the utmost care and precision. This paper aims at providing a step-by-step guide of non-aqueous electrode processing and coin cell construction for lithium-ion batteries within an academic setting and with emphasis on deciphering the influence of drying and calendaring.

Introduction

锂离子电池代表有希望的来源以满足能量存储装置1-4的不断增加的要求。在LIBS能力的改善,不仅提高了有效程型电动车5,6,同时也通过降低放电深度,这反过来又增加LIBS的可行性在电网储能应用7使用改善他们的循环寿命。

最初用于助听器在1970 8,今天硬币电池通常用在新的和现有的电极材料的开发和评价。作为最小形式因子的电池中的一个,这些细胞代表一个简单而有效的方式,以在学术研究设置创建电池。典型的锂离子电池包括一阴极,阳极,集流器,以及防止在阳极和阴极的短路的多孔隔板。在一个锂离子电池的操作中,io的纳秒和电子是移动的。在放电过程中,离子从通过多孔分离器的负电极(阳极)并进入正​​电极,或阴极行进。同时,电子通过集电体行进,穿过外部电路,最后用在阴极侧的离子重组。为了减少与离子和电子转移相关联的任何的电阻,该组件需要正确地定向 – 的距离离子行程应最小。通常,这些部件被组合一个“夹层”结构。在电动汽车,移动电话,和消费电子产品的电池包括被螺旋缠绕或折叠,根据电池的形状因数大三明治。这些类型的细胞可以是非常困难的,而不会产生高的成本来制造在小范围。然而,在纽扣电池有细胞内只有一个三明治。虽然专门的设备仍然是必要的,以建立电极我 Ñ​​硬币电池,细胞本身可用手快速组装并密封在一个受控制的环境。

电池的性能,而不管类型的,依赖于形成的正,负电极,电解液的选择,和小区架构4,9-13的材料。一个典型的LIB电极由含Li的活性物质,导电助剂,聚合物粘合剂,以及填充有电解质的空隙空间的组合。电极的处理可以组织成五个主要步骤:干燥粉末的混合,湿式混合,衬底准备,薄膜应用,和干燥 – 即常很少关注的工序。当生产使用这些处理工序中的电极,最终目标是实现一个均匀的电极膜构成的活性物质,导电助剂,粘合剂的。此均匀分布是LIBS 14-18的最佳性能是至关重要的。

NT“>该指南表示在得克萨斯州A&M在能源和运输科学实验室(ETSL)和得克萨斯州立大学用于制造纽扣电池为新的和现有的电极材料评价的步骤。除了发现记录在许多来源的基本步骤,我们包括我们自己的专业知识在关键的步骤,并指出,经常被冷落的类似的方法文件和许多出版物的重要细节。此外,在我们的实验室中使用的主要物理和电化学方法(恒电流循环和电化学阻抗谱(EIS))在被阐明。

Protocol

注意应在使用任何溶剂,试剂,或干在这个协议中使用的粉末行使。阅读所有MSDS表,并采取相应的安全措施。标准的安全装备,包括手套,防护眼镜和白大褂。 1.阴极的制备注意:阴极制造过程的示意概示于图1。 在ETSL创建阴?…

Representative Results

一个正常投电极片应该会出现均匀的表面外观,妥善坚持集。典型地剥落的电极片的被衬底的任一差蚀刻,或具有至少的NMP在初始混合阶段引起的。可替代地,过多的NMP可以使片材显示较高的孔隙度,这是不可取的。最后,一​​个第三图案可在电极表面上,在那里汇集似乎发生被观察到。相互作用与室(湿度,温度,和任何空气运动)的环境条件针对此行为的最可能的?…

Discussion

湿混级的优化是至关重要的浆料粘度和涂布能力,这会影响该电极的均匀性和粘附性。这里的高剪切混合方法被利用​​,其中,溶剂,添加剂,粘合剂,和活性物质混合在一起利用玻璃球存在于小瓶的动力学运动。该混合技术提供的更快速混合倍的益处相比,磁力搅拌器方法。除此之外,这种高剪切混合允许更粘性的溶液,以得到有效的混合,并提供必要的混合更困难的粘合剂的能量,如在水?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作是由得克萨斯州A与M大学教师科研启动资助(慕克吉)和德克萨斯州立大学启动资金(罗德)资助。

Materials

LiNiMNCoO2 (NMC, 1:1:1) Targray PLB-H1
CNERGY Super C-65 Timcal
Polyvinylidene Difluoride (PVDF) Kynar Flex 2801
1-Methyl-2-pyrrolidinone anhydrous, 99.5% NMP Sigma-Aldrich 328634
1.0 M LiPF6 in EC/DEC (1:1 by vol) BASF 50316366
Celgard 2500 Separator MTI EQ-bsf-0025-60C 25um thick; Polypropylene
Aluminum Foil MTI EQ-bcaf-15u-280
Lithium Ribbon Sigma Aldrich 320080 0.75 mm thickness
2-Propanol, ACS reagent, ≥99.5% Sigma Aldrich 190764
Acetone, ACS reagent, ≥99.5% Sigma Aldrich 179124
Stainless Steel CR2032 Coin Cell Kit  Pred Materials case, cap, and PP gasket
Stainless Steel Spacer  Pred Materials 15.5 mm diameter x 0.5 mm thickness
Stainless Steel Wave Spring  Pred Materials 15 mm diameter x 1.4 mm height
Analytical Scale Ohaus Adventurer AX
Agate Mortar and Pestle VWR 89037-492 5 inch diameter
Tube Drive IKA 3645000
20 ml Stirring Tube IKA  3703000
Glass balls McMaster-Carr 8996K25 6 mm diameter
Automatic Film Applicator Elcometer K4340M10-
Doctor Blade Elcometer K0003580M005
Die Set Mayhew 66000
Vacuum Oven MTI
Vacuum Pump MTI
Laboratory Press MTI YLJ-12
Hydraulic Crimper MTI MSK-110
Glovebox MBraun LABstar
Battery Cycler Arbin Instruments BT2000
Potentiostat/Galvanostat/EIS Biologic VMP3

References

  1. Wagner, R., Preschitschek, N., Passerini, S., Leker, J., Winter, M. Current research trends and prospects among the various materials and designs used in lithium-based batteries. J Appl Electrochem. 43, 481-496 (2013).
  2. Whittingham, M. S. Lithium batteries and cathode materials. Chem Rev. 104, 4271-4301 (2004).
  3. Ellis, B. L., Lee, K. T., Nazar, L. F. Positive Electrode Materials for Li-Ion and Li-Batteries. Chem Mater. 22, 691-714 (2010).
  4. Tarascon, J. M., Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature. 414, 359-367 (2001).
  5. Smith, K., Wang, C. Y. Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles. J Power Sources. 160, 662-673 (2006).
  6. Lu, L. G., Han, X. B., Li, J. Q., Hua, J. F., Ouyang, M. G. A review on the key issues for lithium-ion battery management in electric vehicles. J Power Sources. 226, 272-288 (2013).
  7. Dunn, B., Kamath, H., Tarascon, J. M. Electrical Energy Storage for the Grid: A Battery of Choices. Science. 334, 928-935 (2011).
  8. Cich, E. R. Button Cell battery. US patent. , (1972).
  9. Elul, S., Cohen, Y., Aurbach, D. The influence of geometry in 2D simulation on the charge/discharge processes in Li-ion batteries. J Electroanal Chem. 682, 53-65 (2012).
  10. Buqa, H., Goers, D., Holzapfel, M., Spahr, M. E., Novak, P. High rate capability of graphite negative electrodes for lithium-ion batteries. J Electrochem Soc. 152, A474-A481 (2005).
  11. Chen, Y. H., Wang, C. W., Zhang, X., Sastry, A. M. Porous cathode optimization for lithium cells: Ionic and electronic conductivity, capacity, and selection of materials. J Power Sources. 195, 2851-2862 (2010).
  12. Arora, P., Doyle, M., Gozdz, A. S., White, R. E., Newman, J. Comparison between computer simulations and experimental data for high-rate discharges of plastic lithium-ion batteries. J Power Sources. 88, 219-231 (2000).
  13. Dillon, S. J., Sun, K. Microstructural design considerations for Li-ion battery systems. Curr Opin Solid St M. 16, 153-162 (2012).
  14. Harris, S. J., Lu, P. Effects of Inhomogeneities-Nanoscale to Mesoscale-on the Durability of Li-Ion Batteries. J Phys Chem C. 117, 6481-6492 (2013).
  15. Liu, G., Zheng, H., Song, X., Battaglia, V. S. Particles and Polymer Binder Interaction: A Controlling Factor in Lithium-Ion Electrode Performance. J Electrochem Soc. 159, A214-A221 (2012).
  16. Zheng, H. H., Yang, R. Z., Liu, G., Song, X. Y., Battaglia, V. S. Cooperation between Active Material, Polymeric Binder and Conductive Carbon Additive in Lithium Ion Battery Cathode. J Phys Chem C. 116, 4875-4882 (2012).
  17. Liu, Z. X., Battaglia, V., Mukherjee, P. P. Mesoscale Elucidation of the Influence of Mixing Sequence in Electrode Processing. Langmuir. 30, 15102-15113 (2014).
  18. Liu, Z. X., Mukherjee, P. P. Microstructure Evolution in Lithium-Ion Battery Electrode Processing. J Electrochem Soc. 161, E3248-E3258 (2014).
  19. Zheng, H. H., Tan, L., Liu, G., Song, X. Y., Battaglia, V. S. Calendering effects on the physical and electrochemical properties of Li[Ni1/3Mn1/3Co1/3]O-2 cathode. J Power Sources. 208, 52-57 (2012).
  20. Zheng, H. H., Li, J., Song, X. Y., Liu, G., Battaglia, V. S. A comprehensive understanding of electrode thickness effects on the electrochemical performances of Li-ion battery cathodes. Electrochim Acta. 71, 258-265 (2012).
  21. Marks, T., Trussler, S., Smith, A. J., Xiong, D. J., Dahn, J. R. A Guide to Li-Ion Coin-Cell Electrode Making for Academic Researchers. J Electrochem Soc. 158, A51-A58 (2011).
  22. Li, C. C., Wang, Y. W. Binder Distributions in Water-Based and Organic-Based LiCoO2 Electrode Sheets and Their Effects on Cell Performance. J Electrochem Soc. 158, A1361-A1370 (2011).
check_url/53490?article_type=t

Play Video

Cite This Article
Stein IV, M., Chen, C., Robles, D. J., Rhodes, C., Mukherjee, P. P. Non-aqueous Electrode Processing and Construction of Lithium-ion Coin Cells. J. Vis. Exp. (108), e53490, doi:10.3791/53490 (2016).

View Video