Summary

전자 분무 이온화 질량 분석에 의해 Dicysteinyl Tetrapeptides와 수은 (II)의 복합체 형성에 관한 연구

Published: January 08, 2016
doi:

Summary

The characterization of complexes formed in different relative ratios of mercury(II) to dicysteinyl tetrapeptides by electrospray ionization orbitrap mass spectrometry is presented.

Abstract

In this study we evaluated a method for the characterization of complexes, formed in different relative ratios of mercury(II) to dicysteinyl tetrapeptide, by electrospray ionization orbitrap mass spectrometry. This strategy is based on previous successful characterization of mercury-dicysteinyl complexes involving tripeptides by utilizing mass spectrometry among other techniques. Mercury(II) chloride and a dicysteinyl tetrapeptide were incubated in a degassed buffered medium at varying stoichiometric ratios. The complexes formed were subsequently analyzed on an electrospray mass spectrometer consisting of a hybrid linear ion- and orbi- trap mass analyzer. The electrospray ionization mass spectrometry (ESI-MS) spectra were acquired in the positive mode and the observed peaks were then analyzed for distinct mercury isotopic distribution patterns and associated monoisotopic peak. This work demonstrates that an accurate stoichiometry of mercury and peptide in the complexes formed under specified electrospray ionization conditions can be determined by using high resolution ESI MS based on distinct mercury isotopic distribution patterns.

Introduction

Current clinical drugs prescribed for chelation therapy of mercury poisoning1 contain thiol group(s), which is/are responsible for binding and sequestering mercury ions2,3. However, studies have shown that these small thiol compounds [dimercaptosuccinic acid (DMSA) and dimercaptopropane-sulfonic acid (DMPS)] are not optimal for mercury chelation therapy4-6. Therefore, there is a need to understand the association and complex formation tendencies of mercury with thiols to enhance the rational drug design of thiol compounds for mercury chelation. Recently, we reported that n-alkyl and aryl dicysteinyl tripeptides with dithiol groups can serve as effective “double anchors” to accommodate the coordination sites of mercury(II) to form 1:1 mercury(II):peptide and 1:2 mercury(II):(peptide)2 complexes7. Additionally, we studied the effect of increasing cysteinyl residues on complex type formations8. In this study, we investigate the association of mercury(II) with two dicysteinyl tetrapeptides, where the cysteinyl residues are separated by two amino acid residues. In order to evaluate the effect of auxiliary binding groups for mercury, the intervening amino acids are either two glycine (unsubstituted) residues or two glutamic acid (gamma-carboxylated) residues.

The reaction of cysteinyl peptide with mercury(II) requires conditions that will prevent the oxidation of the cysteinyl thiol groups to form disulfide bonds9. Moreover, the association of mercury(II) with cysteinyl peptides to form various types of mercury-peptide complexes is dependent on the initial ratio of mercury(II): peptide in the reaction mixture7,8. The types of mercury-peptide complexes formed in these reaction mixtures can be analyzed by soft-ionization mass spectroscopy, which is a sensitive analytical tool for determining species interactions between metal ions and peptides10-14. Accordingly, it will provide a profile of the various types of mercuriated peptide adducts that are formed under a specified electrospray ionization condition. Here, we will show how cysteinyl peptides and mercury(II) chloride solutions can be prepared in degassed ammonium formate buffer solution blanketed with argon to minimize oxidation. By reacting varying mole equivalents of mercury(II) with dicysteinyl tetrapeptides, we will show how the initial ratio of mercury(II):peptide has an effect on the types of complexes formed. We will also show how electrospray ionization (ESI) mass spectrometry can be used as a characterization tool to provide an accurate stoichiometry of mercury to peptide in the complexes formed. The associated video protocol will demonstrate the experimental conditions for preparing the mercury complexes, the procedure for analyzing the reaction mixtures under specified electrospray ionization conditions, and the characterization of the stoichiometries of mercury(II)-dicysteinyl tetrapeptide complexes, based on the distinct mercury isotope distribution patterns, by using the ChemCal program15. It is intended to assist those who are interested in using ESI orbitrap mass spectrometry to analyze various complexes formed by metal ions that exist in different isotopic forms.

Protocol

참고 : 사용하기 전에 모든 관련 물질 안전 보건 자료 (MSDS)를 참조하시기 바랍니다. 염화 수은은 독성 화학 물질이다. IT와 관련된 모든 솔루션을 전달하는 경우 개인 보호 장비 (장갑, 보안경 및 실험실 코트)를 착용해야합니다. 중금속 지정된 명확하게 표시 화학 폐기물 병에 솔루션을 폐기하십시오. 1. 준비 5 mM의 탈기 암모늄 편대 버퍼, pH가 7.5 HPLC 등급의 물 450 ㎖?…

Representative Results

연구는 ESI 질량 분석에 의해 두 tetrapeptides, CGGC 및 CEEC (그림 1)에 사용할 수있는 수은 펩타이드 복합 성분의 특성을 실시 하였다. CGGC 또는 CEEC 수은 (II) 착물은 수은의 혼합물의 반응에 의해 조사 하였다 (II) 및 세 개의 다른 몰비에서 펩티드 용액 : 1 : 0.5, 1 : 1 및 1 : 2 ((II) 수은 : 펩티드) . 수은의 농도 (II)는 7.5 × 10 -6 M이고 펩티드 농도는 그에 따라 …

Discussion

소수성 dicysteinyl의 테트라 CGGC (C 10 H 18 N 4 O 5 S 2; MW는 = 338) (도 1), 수은과 복합체를 형성한다 (II)도 2에 도시되고 표 1 또한, 펩티드 이량 체 및 삼량 체를 형성하고있다.이 점진적 반응 혼합물 중의 펩티드의 양이 증가 등. m / z에 연결된 이량 체의 값 [(2M + H) + = 677] 및 삼량 체에 의해 도시 된 바와 같이 [(3M + H)은…

Disclosures

The authors have nothing to disclose.

Acknowledgements

MN-S는 국립 과학 재단 (National Science Foundation)의 지원을 인정, 루이 저자는 감사 써모 피셔 과학 LTQ Orbitrap XL 질량 분석기의 사용을 위해 그린 즈 버러 노스 캐롤라이나 대학의 인조 질량 분석 시설을 인정 CHE 1011859.을 부여합니다. 저자는이 작품에 대한 유용한 제안과 의견을 그린 즈 버러 노스 캐롤라이나 대학의 다니엘 토드, 빈센트 시카 및 Brandie Erhmann 감사합니다.

Materials

Mercury(II) chloride Sigma-Aldrich 429724 Highly toxic
Ammonium formate Sigma-Aldrich 516961
Formic acid Sigma-Aldrich F0507
Ammonium hydroxide Fisher A512-P500
HPLC water Fisher W5-4
HPLC Acetonitrile Fisher BP2405-1
HPLC Methanol Fisher A452-4

References

  1. Clifton, J. C. Mercury exposure and public health. Pediatr. Clin. N. Am. 54, 237-269 (2007).
  2. Andersen, O. Principles and Recent Developments in Chelation Treatment of Metal Intoxication. Chem. Rev. 99, 2683-2710 (1999).
  3. Aposhian, H. V., Maiorino, R. M., Gonzalez-Ramirez, D., Zuniga-Charles, M., Xu, Z., Hurlbut, J. M., Junco-Munoz, P., Dart, R. C., Aposhian, M. M. Mobilization of heavy metals by newer, therapeutically useful chelating agents. Toxicology. 97, 23-38 (1995).
  4. Flora, S. J. S., Pachauri, V. Chelation in Metal Intoxication. Int. J. Environ. Res. Public Health. 7, 2745-2788 (2010).
  5. Campbell, J. R., Clarkson, T. W., Omar, M. D. The therapeutic use of 2,3-dimercaptopropane-1-sulfonate in two cases of inorganic mercury poisoning. JAMA. 256, 3127-3130 (1986).
  6. Rooney, J. P. K. The role of thiols, dithiols, nutritional factors and interacting ligands in the toxicology of mercury. Toxicology. 234, 145-156 (2007).
  7. Lin, X., Brooks, J., Bronson, M., Ngu-Schwemlein, M. Evalution of the association of mercury (II) with some dicysteinyl tripeptides. Bioorg. Chem. 44, 8-18 (2012).
  8. Ngu-Schwemlein, M., Lin, X., Rudd, B., Bronson, M. Synthesis and ESI mass spectrometric analysis of the association of mercury(II) with multi-cysteinyl peptides. J. Inorg. Biochem. 133, 8-23 (2014).
  9. Winther, J. R., Thorpe, C. Quantification of thiols and disulfides. Biochimica et. Biophysica Acta. 1840, 838-846 (2014).
  10. D’Agstino, A., Colton, R., Traeger, J. C., Cantry, A. J. An Electrospray Mass Spectrometric Study of Organomercury (II) and Mercuric Interactions with Peptides Involving Cysteinyl Ligands. Eur. Mass Spectrom. , 273-285 (1990).
  11. Hofstadler, S. A., Sannes-Lowery, K. A. Applications of ESI-MS in drug discovery: interrogation of noncovalent complexes. Nature Reviews Drug Discovery. 5, 585-595 (2006).
  12. Rubino, F. M., Verduci, C., Giampiccolo, R., Pulvirenti, S., Brambilla, G., Columbi, A. Molecular Characterization of Homo- and Heterodimeric Mercury (II)-bis-thiolates of Some Biologically Relevant Thiols by Electrospray Ionization and Triple Quadruple Tandem Mass Spectrometry. J. Am. Soc. Mass Spectrom. 15, 288-300 (2003).
  13. Krupp, E. M., Milne, B. F., Mestrot, A., Meharg, A. A., Feldmann, J. Investigation into mercury bound to biothiols: structural identification using ESI-ion-trap MS and introduction of a method for their HPLC separation with simultaneous detection by ICP-MS and and ESI-MS. Anal. Bioanal. Chem. 390, 1753-1764 (2008).
  14. Schaumlöffel, D., Tholey, A. Recent directions of electrospray mass spectrometry for elemental speciation analysis. Anal. Bioanal. Chem. 400, 1645-1652 (2011).
  15. Patiny, L., Borel, A. ChemCalc: a building block for tomorrow’s chemical infrastructure. J. Chem. Inf. Model. 53, 1223-1228 (2013).
  16. Thermo Scientific. . Xcaibur Versions 2.1.0-2.3.0 Data Acquisition and Processing User Guide. Revision E. United States. , (2012).
  17. Falcone, G., Foti, C., Gianguzza, A., Giuffrè, O., Napoli, A., Pettignano, A., Piazzese, D. Sequestering ability of some chelating agents towards methylmercury(II). Anal. Bioanal. Chem. 405 (2), 881-893 (2013).
  18. Mah, V., Jalilehvand, F. Glutathione Complex Formation with Mercury(II) in Aqueous Solution at Physiological pH. Chem. Res. Toxicol. 23, 1815-1823 (2010).
check_url/53536?article_type=t

Play Video

Cite This Article
Mazlo, J., Ngu-Schwemlein, M. A Study of the Complexation of Mercury(II) with Dicysteinyl Tetrapeptides by Electrospray Ionization Mass Spectrometry. J. Vis. Exp. (107), e53536, doi:10.3791/53536 (2016).

View Video