Summary

A Fabrication Method for Highly Stretchable Conductors with Silver Nanowires

Published: January 21, 2016
doi:

Summary

A simple synthesis method is used to chemically solder silver nanowire thin film to fabricate highly stretchable and conductive metal conductors.

Abstract

Stretchable electronics are identified as a key technology for electronic applications in the next generation. One of the challenges in fabrication of stretchable electronic devices is the preparation of stretchable conductors with great mechanical stability. In this study, we developed a simple fabrication method to chemically solder the contact points between silver nanowire (AgNW) networks. AgNW nanomesh was first deposited on a glass slide via spray coating method. A reactive ink composed of silver nanoparticle (AgNPs) precursors was applied over the spray coated AgNW thin films. After heating for 40 min, AgNPs were preferentially generated over the nanowire junctions to solder the AgNW nanomesh, and reinforced the conducting network. The chemically modified AgNW thin film was then transferred to polyurethane (PU) substrates by casting method. The soldered AgNW thin films on PU exhibited no obvious change in electrical conductivity under stretching or rolling process with elongation strains up to 120%.

Introduction

Deformable electronic devices with large stretchability have been identified as critical parts to the realization of wearable and portable electronics in the next generation.1 Those stretchable electronic devices not only show great flexibility as those electronic devices on plastic sheets,2, 3 but also exhibit excellent performance under severe stretching or twisting conditions.4 To realize the stretchable electronics, materials with great electric performance under large deformation is needed. Recent advancements in material sciences have shown the possibility to synthesize such functional materials and have used them to design stretchable optoelectronic devices 5-9 with great tolerance to complex shape deformations. Among all the electronic functional materials, stretchable conductors are necessary to supply electrical power to those optoelectronic devices and thus are of critical importance for device performance. Because regular conducting materials, like metal or indium tin oxide, lack of mechanical robustness under large deformation, interconnects made of these materials are unable to exhibit good electrical conductivity under stretching process. Thus, elastic substrates covered with a thin layer of flexible conductive materials, such as carbon nanotube,1 graphene,10 or AgNWs,11-14 are designed for conductors with excellent stretchability. Because of the high bulk conductivity, AgNW thin films have been shown to be the most promising material for composite stretchable conductors.13 The percolating networks of AgNW thin films can effectively accommodate large elastic deformations in stretching process with great electrical conductance, and are considered as a promising stretchable electrode candidate. To implement AgNW thin films as stretchable conductors, it is necessary to have effective electrical contacts between AgNWs. After liquid deposition and drying on substrate surfaces, AgNWs regularly stack together to form a percolating mesh with loose contact points, which yield in large electrical resistances. Thus, one needs to anneal the contacts between nanowires by high-temperature or high-pressure annealing methods15-20 to reduce the contact resistances.

In contrast to these annealing processes in the literature, here, we will demonstrate a simple chemical method to anneal AgNW network connections under regular laboratory conditions.21 The fabrication process is shown in Figure 4A. A reactive ink is used to sinter the spray coated AgNW thin films on a glass plate. After reaction, the contacts between nanowires are covered with silver and hence the AgNW network is soldered chemically together. A cast-and-peel method is then used to transfer the soldered AgNW network to a stretchable PU substrate to form a composite conductor, which can exhibit no obvious change in electrical conductivity even at large tensile strain of 120%.

Protocol

1. Preparation of Silver Precursor Ink Add 1.85 g of diethanolamine (DEA) in 3.15 ml deionized water. Dissolve 0.15 g of silver nitrate in 5 ml deionized water. Mix the aqueous silver nitrate solution with DEA at a 1:1 volume ratio to have 10 ml silver precursor ink right before use. 2. Fabrication of Stretchable Conductive Thin Films Preparation of AgNW ink Dilute 2 ml of 0.5 wt% AgNWs in isopropanol with 18 ml de…

Representative Results

The morphology of the AgNW thin film after chemical soldering process is shown in Figure 4B. Recovered AgNPs preferentially grow on the surface of AgNWs and wrap over the wire/wire junctions. Figure 5 shows the variation in sheet resistance with applied elongation strains for the unsoldered and the soldered thin films containing different amount of AgNWs. After the chemical soldering process, AgNW thin film conductors can maintain high conductivity under …

Discussion

The chemical soldering process can help reinforce the contact between silver nanowires. As shown in Figure 4b, the wire/wire junctions are covered with silver after applying the reactive silver ink over the spray coated AgNW thin film. The silver recovery relies strongly on the formaldehyde generated from DEA degradation, and thus the soldering process or silver reduction can be accelerated with increasing temperature.22 Because the metal surfaces of AgNWs provide effective electron exchange s…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors are grateful for the financial support from Ministry of Science and Technology.

Materials

Silver nanowire Sigma-Aldrich 778095-25ML AgNW, 120 nm in diameter and 20-50 mm in length, 0.5 wt% in IPA
Silver nitrate crystal Macron Fine Chemicals MK216903
Diethanolamine Sigma-Aldrich D8885-500G
Polyurethane emulsion First Chemical 20130326036 35 wt% water-based anionic polyester-polyurethane emulsion
Airbrush Taiwan Airbrush & Equipment AFC-sensor 
Desktop robot Dispenser Tech DT-200 
Digital dispenser controller Dispenser Tech 9000E 
Auto-spraying program Dispenser Tech Smart robot edit version 3.0.0.5
Air compressor  PUMA Industrial NCS-10 
Linear motorized stage TANLIAN E-O Customized
Stage control software TANLIAN E-O Customized
Digital multimeter HILA INTERNATIONAL DM-2690TU
Digital multimeter software HILA INTERNATIONAL NA
Power supply CHERN TAIH CT-605
LED PChome M08330766 http://www.pcstore.com.tw/sun-flower/M08330766.htm

References

  1. Rogers, J. A., Someya, T., & Huang, Y. Materials and mechanics for stretchable electronics. Science. 327 (5973), 1603-1607 (2010).
  2. Mazzeo, A. D., et al. Paper-based, capacitive touch pads. Adv. Mater. 24 (21), 2850-2856 (2012).
  3. Yang, C., et al. Silver nanowires: from scalable synthesis to recyclable foldable electronics. Adv. Mater. 23 (27), 3052-3056 (2011).
  4. Sekitani, T., & Someya, T. Stretchable, Large-area Organic Electronics. Adv. Mater. 22 (20), 2228-2246 (2010).
  5. Lipomi, D. J., Tee, B. C., Vosgueritchian, M., & Bao, Z. Stretchable organic solar cells. Adv. Mater. 23 (15), 1771-1775 (2011).
  6. Liang, J., Li, L., Niu, X., Yu, Z., & Pei, Q. Elastomeric polymer light-emitting devices and displays. Nat. Photonics. 7 (10), 817-824 (2013).
  7. White, M. S., et al. Ultrathin, highly flexible and stretchable PLEDs. Nat. Photonics. 7 (10), 811-816 (2013).
  8. Chang, I., et al. Performance enhancement in bendable fuel cell using highly conductive Ag nanowires. Int. J. Hydrogen Energ. 39 (14), 7422-7427 (2014).
  9. Yan, C. Y., et al. An Intrinsically Stretchable Nanowire Photodetector with a Fully Embedded Structure. Adv. Mater. 26 (6), 943-950 (2014).
  10. Lee, M. S., et al. High-performance, transparent, and stretchable electrodes using graphene-metal nanowire hybrid structures. Nano Lett. 13 (6), 2814-2821 (2013).
  11. Xu, F., & Zhu, Y. Highly conductive and stretchable silver nanowire conductors. Adv. Mater. 24 (37), 5117-5122 (2012).
  12. Yun, S., Niu, X., Yu, Z., Hu, W., Brochu, P., & Pei, Q. Compliant silver nanowire-polymer composite electrodes for bistable large strain actuation. Adv. Mater. 24 (10), 1321-1327 (2012).
  13. Lee, P., et al. Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv. Mater. 24 (25), 3326-3332 (2012).
  14. Akter, T., & Kim, W. S. Reversibly Stretchable Transparent Conductive Coatings of Spray-Deposited Silver Nanowires. ACS Appl. Mater. Interfaces. 4 (4), 1855-1859 (2012).
  15. Madaria, A., Kumar, A., Ishikawa, F., & Zhou, C. Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique. Nano Res. 3 (8), 564-573 (2010).
  16. Lee, J., et al. Room-Temperature Nanosoldering of a Very Long Metal Nanowire Network by Conducting-Polymer-Assisted Joining for a Flexible Touch-Panel Application. Adv. Funct. Mater. 23 (34), 4171-4176 (2013).
  17. Tokuno, T., et al. Fabrication of silver nanowire transparent electrodes at room temperature. Nano Res. 4 (12), 1215-1222 (2011).
  18. Garnett, E. C., et al. Self-limited plasmonic welding of silver nanowire junctions. Nat. Mater. 11 (3), 241-249 (2012).
  19. Zhu, S., et al. Transferable self-welding silver nanowire network as high performance transparent flexible electrode. Nanotechnology. 24 (10), 1321-1327 (2013).
  20. Han, S., et al. Fast Plasmonic Laser Nanowelding for a Cu-Nanowire Percolation Network for Flexible Transparent Conductors and Stretchable Electronics. Adv. Mater. 26 (33), 5808-5814 (2014).
  21. Chen, S. P., & Liao, Y. C. Highly stretchable and conductive silver nanowire thin films formed by soldering nanomesh junctions. Phys. Chem. Chem. Phys. 16 (37), 19856-19860 (2014).
  22. Chen, S. P., Kao, Z. K., Lin, J. L., & Liao, Y. C. Silver conductive features on flexible substrates from a thermally accelerated chain reaction at low sintering temperatures. ACS Appl. Mater. Interfaces. 4 (12), 7064-7068 (2012).
check_url/53623?article_type=t

Play Video

Cite This Article
Chang, C., Chen, S., Liao, Y. A Fabrication Method for Highly Stretchable Conductors with Silver Nanowires. J. Vis. Exp. (107), e53623, doi:10.3791/53623 (2016).

View Video