Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove

Medicine

Modeling and Simulations of Olfactory Drug Delivery with Passive and Active Controls of Nasally Inhaled Pharmaceutical Aerosols

Published: May 20, 2016 doi: 10.3791/53902

Summary

This manuscript reviews the modeling and simulations of different protocols to deliver medications to the olfactory region in image-based nasal airway models. Multiple software modules are used to develop the anatomically accurate nose model, generate computational mesh, simulate nasal airflows, and predict particle deposition at the olfactory region.

Abstract

There are many advantages of direct nose-to-brain drug delivery in the treatment of neurological disorders. However, its application is limited by the extremely low delivery efficiency (< 1%) to the olfactory mucosa that directly connects the brain. It is crucial to develop novel techniques to deliver neurological medications more effectively to the olfactory region. The objective of this study is to develop a numerical platform to simulate and improve intranasal olfactory drug delivery. A coupled image-CFD method was presented that synthetized the image-based model development, quality meshing, fluid simulation, and magnetic particle tracking. With this method, performances of three intranasal delivery protocols were numerically assessed and compared. Influences of breathing maneuvers, magnet layout, magnetic field strength, drug release position, and particle size on the olfactory dosage were also numerically studied.

From the simulations, we found that clinically significant olfactory dosage (up to 45%) were feasible using the combination of magnet layout and selective drug release. A 64 -fold higher delivery of dosage was predicted in the case with magnetophoretic guidance compared to the case without it. However, precise guidance of nasally inhaled aerosols to the olfactory region remains challenging due to the unstable nature of magnetophoresis, as well as the high sensitivity of olfactory dosage to patient-, device-, and particle-related factors.

Introduction

Drugs delivered to the olfactory region can bypass the blood-brain-barrier and directly enter the brain, leading to an efficient uptake and quick action onset of the drugs1,2. However, conventional nasal devices such as nasal pumps and sprays deliver extremely low doses to the olfactory region (< 1%) via the nasal route3,4. It is primarily due to the complicated structure of the human nose which is composed of narrow, convoluted passageways (Figure 1). The olfactory region locates above the superior meatus, where only a very small fraction of inhaled air can reach5,6. Furthermore, conventional inhalation devices depend on aerodynamic forces to transport therapeutic agents to the target area7. There is no further control over the motions of particles after their release. Therefore, the transport and deposition of these particles predominately depend on their initial speeds and release positions. Due to the convoluted nasal passage as well as the lack of particle control, the majority of drug particles are trapped in the anterior nose and cannot reach the olfactory region8.

While there are many choices of nasal devices, those designed specifically for targeted olfactory delivery have rarely been reported7,9. One exception is Hoekman and Ho10 who developed an olfactory-preferential delivery device and demonstrated higher cortex-to-blood drug levels in rats as opposed to using a nose drop. However, scaling the deposition results in rats to humans is not straightforward, considering the vast anatomical and physiological differences between these two species11. Many limitations exist when using adapted versions of standard nasal devices for olfactory deliveries. One primary setback is that only a very small portion of medications can be delivered to the olfactory mucosa, through which the medications may enter the brain. Numerical modeling predicted that less than 0.5% of intranasally administered nanoparticles can deposit in the olfactory region3,5. The deposition rate is even lower (0.007%) for micrometer particles12. In order to make the nose-to-brain delivery clinically feasible, the olfactory deposition rate has to be significantly improved.

There exist several possible approaches to improve the olfactory delivery. One approach is the smart inhaler idea proposed by Kleinstreuer et al.13 As particles depositing in one region are mainly from one specific area at the inlet, it is possible to deliver particles to the target site by releasing them only from certain areas at the inlet. The smart delivery technique has been shown to generate a much more efficient lung delivery than conventional methods.13,14 It is hypothesized that this smart delivery idea can also be applied in intranasal drug delivery to improve dosages to the olfactory mucosa. By releasing particles into different positions at the nostril opening and from different depths within the nasal cavity, improved olfactory delivery efficiencies and reduced drug waste in the anterior nose are possible.

Another possible method is to actively control the particle motion within the nasal cavity using a variety of field forces, such as electric or magnetic force. Electric control of charged particles has been suggested for targeted drug delivery to the human nose and lungs15-17. Xi et al.18 numerically tested the performance of electric guidance of charged particles and predicted significantly improved olfactory doses. Similarly, guidance of ferromagnetic drug particles with an appropriate magnetic field also has the potential to target particles to the olfactory mucosa. Behaviors of inhaled agents, if ferromagnetic, can be altered by imposing appropriate magnetic forces19. Dames et al.20 demonstrated that it is practical to target ferromagnetic particles to specific areas in mouse lungs. By packaging therapeutic agents with superparamagnetic iron oxide nanoparticles, the deposition in one lung of a mouse under the influence of a strong magnetic field was significantly increased compared to the other lung20.

Particles were assumed to be spherical and ranged from 150 nm to 30 µm in diameter. The governing equation is21:
(1)Equation 1

The above equation describes the motion of a particle governed by drag force, gravitational force, Saffman lift force 22, Brownian force for nanoparticles, and magnetophoretic force if placed in a magnetic field. Here, vi is the particle velocity, ui is the flow velocity, τp is the particle response time, Cc is the Cunningham correction factor, and α is the air/particle density ratio. To effectively guide the intranasally administered drugs to the olfactory region, it is necessary for the applied magnetophoretic forces to overcome both the particle inertia and gravitational force. In this study, a composite of 20% maghemite (γ-Fe2O3, 4.9 g/cm3) and 80% active agent was assumed, which give a density of approximate 1.78 g/cm3 and a relative permeability of 50. The selection of γ-Fe2O3 was due to its low cytotoxic. Iron (3+) ions are widely found in human body and a slightly higher ion concentration will not cause significant side-effects23.

Subscription Required. Please recommend JoVE to your librarian.

Protocol

The MRI images were provided by the Hamner Institutes for Health Sciences and the usage of these images was approved by the Virginia Commonwealth University institutional review board.

1. Image-Based Nasal Airway Preparation

  1. Acquire magnetic resonance (MR) images of a healthy non-smoking 53-year-old male (weight 73 kg and height 173 cm) that consist of 72 coronal cross-sections spaced 1.5 mm apart spanning the nostrils to the nasopharynx4.
  2. Open Imaging Program (e.g., MIMICS)
    1. To import images, click "File", "Import images". Select the MR images and click "Ok".
    2. To construct the 3-D model, click "Segmentation", then "Threshold" to set the grey scale range between -1020 and -500. Click "Segmentation", "Calculate 3D".
    3. Click "Segmentation" and "Calculate polylines". Select the 3-D body, and click "Ok" to generate the polylines that define the solid geometry. Export the polylines as an IGES file.
  3. Open Model Development Software (e.g., Gambit)
    1. Click "File", "Import", "IGES" to import the IGES file into the program. Click "Edge command button" on the right panel; click "Create Edge" and select "NURBS" to reconstruct smooth contours.
    2. Click "Face command button", then click "Form face". Select "Wireframe" to build a surface from edges. Continue to build all surfaces that cover the whole airway. Retain the nasal anatomical details such as the uvula, epiglottal fold, and laryngeal sinus (Figure 1). Click "File", "Export" "IGES" to export the nasal airway model.
  4. Open Meshing Software (e.g., ICEM CFD)
    1. Click "File", "Import Geometry", "Legacy" and "STEP/IES" to import the nasal airway model. Click "Create Parts" to divide the airway surfaces into five different regions: nasal vestibule, nasal valve, turbinate region, olfactory, and nasopharynx.
    2. To generate computational mesh inside the airway, click "Mesh", "Global Mesh Setup". Specify the maximum mesh size as 0.1 mm and click "Apply".
    3. To add a body-fitted mesh in the near-wall region, click "Compute Mesh", "Prism Mesh". Specify the number of layers as 5 and the expanding ratio as 1.25 and click "Apply".

2. Passive Control of Particles

  1. Vestibular Intubation: Front vs. Back
    1. Open Model Development Software to develop the nasal model with front vestibular intubation. Click "Volume", then "Move/copy" to change the location of the nebulizer catheter 5 mm into the vestibule from nostril tip. Click "injection" to release 60,000 particles (150 nm) into the nostril.
    2. Open the fluid simulation software (e.g., ANSYS Fluent) to compute particle deposition rates inside the nose. To compute the airflow field inside the airway, select the laminar flow model by clicking "Define", "Models", "Viscous"; chose "Laminar" under "Viscous model".
    3. Select the "Discrete Phase Model" to track particle motions. Check "Saffman Lift Force" under "Discrete Phase Model". Click "Report", then choose "Sample Trajectories"; select "nasal" under "Boundaries" and click "Compute" to find the number of particles deposited in the predefined olfactory region. Calculate the deposition rate as the ratio of the amount of deposited particles to the amount of particles entering the nostrils.
    4. Repeat steps 2.1.2 for 1 µm particles.
    5. Follow the step 2.1.1, insert the spray nozzle 5 mm into the vestibule from the back of the nostril. Repeat steps 2.1.2, and 2.1.3 to compute deposition rate for 150 nm particles. Repeat step 2.1.4 for 1 µm particles (back-intubation).
  2. Deep Intubation
    1. Follow procedure 2.1.1 to insert the nebulizer catheter right beneath the olfactory region. Release 60,000 submicron particles (150 nm) from the nebulizer.
    2. Use fluid and simulation software to compute particle deposition rates inside the nose on both total and local basis by following similar procedures as listed in 2.1.2. Repeat this procedure for 1 µm particles.
    3. Repeat the above procedures while exercising breathing-holding and exhalation, respectively. Click "Define", then "Boundary Conditions" to open the boundary condition panel. Specify zero velocity at the two nostrils for breathing-holding. Specify vacuum pressure (200 Pa) at the nostrils and zero pressure at the outlet for exhalation.

3. Active Control: Magnetophoretic Guidance

  1. Test in a Two-Plate Channel
    1. Open magnetic particle tracking software (e.g., COMSOL). Click "Geometry", and "Rectangle" to build the two-plate channel. Click "Rectangle" to build the magnets around the two-plate channel.
    2. Compute the particle trajectories and deposition rate. Click "Model 1", "Laminar flow" and "Inlet 1"; specify the inlet velocity as 0.5 m/s. Click "Model 1", "Magnetic Fields", and "Magnetic Flux Conservation", specify the strength of the three magnets (1 × 105 A/m).
    3. Click "Model 1", "Particle Tracking for Fluid Flow", and "Particle Properties"; specify the particle diameter (15 µm), density (1.78 g/cm3). Click "Inlet" to release 3,000 particles. Click "Magnetophoretic Force", specify particle relative permeability (50). Click "Compute".
    4. To find how many particles depositing in the selected area, click "Results", "1D Plot Group" and "Plot". Calculate the deposition rate as the ratio of the amount of particle deposited in certain area to the amount of particles entering the geometry.
    5. To adjust the magnet strength, click "Model 1", then "Magnetic Fields"; choose "Magnetic Flux Conservation", and change the magnet strength under "Magnetization". Increase the magnet strength by an increment of 1 × 104 A/m and click "Compute".
    6. Repeat this procedure until the appropriate magnets arrangement was obtained for effective drug delivery to the olfactory region.
  2. Test in the 2-D Idealized Nose Model
    1. Apply the magnetic strengths obtained in 3.1 into a 2-D nose model by putting three magnets 1 mm above the nose. Click "Model 1", "Geometry 1" to specify the size and position of the magnet. Click "Model 1", "Particle Tracking for Fluid Flow", "Inlet" to release 3,000 particles into the left nostril. Click "Particle Properties" to specify the particle size as 15 µm.
    2. Simulate the particle trajectories and subsequent olfactory delivery efficiencies by following similar procedures as listed in 3.1.2.
    3. Adjust the magnet layout and strength to improve olfactory delivery efficiency. To adjust the magnet size and position, click "Model 1", then "Geometry 1"; choose the magnet of interest, change the values of width, depth, height or x, y, z. Follow 3.1.5 to adjust the magnet strength.
  3. Test in the 3-D Anatomically Accurate Nose Model
    1. Import the 3-D nasal airway model into Magnetic Particle Tracking software. Follow the procedure 3.2.1, put four magnets 1 mm above the nose and release 3,000 particles of 15 µm in diameter from one selected point only.
    2. Use Magnetic Particle Tracking software to track particle trajectories and compute olfactory delivery efficiencies by following similar procedures as listed in 3.2.1 - 3.2.3.
    3. Following 3.2.3, adjust the magnet layout and strength in the 3D model to improve the targeted delivery to the olfactory region.
    4. Test particle size ranging from 1 - 30 µm to find the right particle size for optimal magnetophoretic guidance to the olfactory region.

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

Control Case:
Figure 3 displays the airflow field and particle deposition in the nasal airway with standard nasal devices. It clearly shows that airflow from the front nostril is ventilated to the upper passage and airflow from the back nostril is directed towards the nasal floor (Figure 3A). Aerosol particles are observed to move faster in the median passages and slower near the walls, forming an aerosol front in the mean flow direction. Aerosol particles can reach the olfactory region in 0.02 to 0.03 sec after entering the nostril under normal breathing conditions (20 L/min) (Figure 3B). Very few particles (0.22%) deposit in the upper nose (superior meatus); even fewer particles (0.007%) reach the uppermost olfactory mucosa (Figure 3C). Highly heterogeneous deposition patterns were predicted, as illustrated by the wide range of deposition enhancement factor (DEF) in Figure 3C. Here, the DEF denotes the level of local particle accumulation and is computed as the ratio of local deposition rate over regional-averaged deposition rate in the nose24. The numerical model in this study was also validated against experimental data obtained in a comparable nasal airway replica. Good agreement was achieved between the numerically predicted and experimental measurements (Figure 3D).

Passive Control I: Vestibular Intubation

The simulation results of the vestibular intubation protocol are shown in Figure 4. For both the front and back intubation cases, there is a strong jet effect immediately downstream of the nozzle (Figure 4A). It is expected that particles released into the front vestibule will more likely deposit in the olfactory region than in other regions. Considering the back intubation case, the main flow is sucked downwards by the vacuum induced by the jet effect (Figure 4B). As expected, more drug particles are delivered to the olfactory region with the front intubation protocol in comparison to the back protocol. In addition, more focused deposition is observed in the olfactory region with the front release. The maximum DEF value is around 2.5 times that of the back release.

From Figure 4C, the difference of deposition rates is insignificant among the three cases (control, front, back). However, a dramatic difference exists in the olfactory deposition with the front-release giving significantly higher olfactory dosage, approximately twice that of the back-release case and ten times that of the control case.

Passive Control II: Deep Intubation with Different Breathing Maneuvers

In this protocol, the spray nozzle was inserted close to the olfactory mucosa. This positioning successfully bypassed the nasal valve, the major flow-limiting area in the nose. Three breathing conditions (inhalation, breath-holding, and exhalation) were considered regarding their influences on the olfactory drug delivery. Normal breathing rate (20 L/min) was used in both inhalation and exhalation conditions. Among the three breathing conditions, inhalation gave the highest dose as displayed by the concentrated olfactory depositions (Figure 5A). In contrast, both breath-holding and exhalation conditions failed to generate focused depositions. Clues to the diffusive deposition pattern can be obtained in nasal aerodynamics shown in Figures 5B & c, where only a small portion of the airflow goes to the olfactory region while the majority moves downwards either to the lung (Figure 5B) or exits to the ambient air (Figure 5C). In particular, particles in the exhalation case are dispersed throughout the nasal passages with no apparent deposition hot spots. Instead, for the inhalation case, high DEF values are restricted to the olfactory region only, with low DEF values observed in the turbinate region. This is an ideal deposition pattern, as it will maximize the therapeutic outcome in the targeted olfactory region while minimizing side effects in other regions.

The performance between the two delivery methods (vestibular vs. deep intubations) was further compared as a function of deposition rate per unit area (%/cm2) in Figure 5D. The surface area of the olfactory region was 6.8 cm2 in this study. Higher olfactory dosage per unit area was delivered with the deep intubation in comparison to the vestibular intubation. Specifically, the deep intubation under inhalation conditions delivered 2.5 times higher dose than that of the front vestibule release recommended in the first protocol. It should be noted that the deposited dosage still needs to diffuse across the olfactory epithelium before entering the cerebrospinal fluids.

Active Control: Magnetophoretic Guidance

Three geometries were employed in the numerical experiments of active particle controls: a two-plate channel to find the working magnet strength, an idealized 2-D nose model to find a baseline magnet layout, and an image-based 3-D nose model to test the performance and refine operating parameters of the magnetophoretic guidance protocol. Figure 6A shows the simulation results of two trials in the two-plate channel. In the first trial, we tested the feasibility of controlling particle motions by using magnetophoretic forces to counteract gravity, allowing the particles to move horizontally instead of falling. To this purpose, we applied three magnets on top of the channel (upper panel of Figure 6A). The resultant magnet field was stronger at the upper plate and weaker at the bottom plate. The ferromagnetic particles were attracted upward to the stronger magnetic field, which acted against gravity. When all three magnets had a volume magnetization of 1 × 105 A/m and the given particle size was 15 µm, the magnetophoretic force was in equilibrium with the gravitational force at the centerline of the channel (upper panel of Figure 6A).

The second trial tested how the particle trajectories changed when stronger magnets were applied (lower panel of Figure 6A). In this trial, the left two magnets were kept at 1 × 105 A/m, while the right magnet was increased to 1 × 106 A/m. Since the magnetic field was much stronger on the right side, all particles that passed through the left half of the channel turned their direction upward and deposited in the proximity of the third magnet. This trial demonstrated that when the magnetophoretic force was strong enough, the particle motion could be manipulated to reach the target site.

The performance of the magnetophoretic guidance was further assessed in an idealized 2-D nose model. One row of magnets was applied on the top of the nasal airway to attract the ferromagnetic particles upwards to the olfactory region. Figure 4C shows the particle transport and deposition after releasing the particles from one point at the tip of the nostril with a different magnet layout. It is shown that particle trajectories deviate upward due to the presence of magnets above the nose (Figure 6B). Furthermore, with appropriate magnet strength (1 × 106 A/m in Case 3), the majority of magnetophoretic-driven particles from this point deposits in the olfactory region (~ 92%). By contrast, an inadequate magnet field yields less pronounced magnetic responsiveness (Cases 1&2). In the absence of magnets, nearly no particles deposit onto the olfactory region even though the particles will pass by the olfactory region (Figure 6B).

Simulation results in the 3-D nose model under magnetophoretic guidance are shown in Figure 7. Following the parameters obtained in the 2-D nose model, magnets with a volume magnetization 1 × 106 A/m were initially employed. However, the olfactory delivery in this initial trial did not show promising results, presumably due to inadequate upward magnetophoretic force to reverse the particle motion. To identify the appropriate magnet strength for effective olfactory deliveries, a variety of volume magnetizations were tested by progressively increasing from 1 × 106 A/m by an increment of 1 × 105 A/m. It was observed that by increasing the maximum magnetization to 7.1 × 107 A/m, about 33% of the administered particles deposited in the olfactory region, and by increasing to 8.1 × 107 A/m, about 45% deposit in the olfactory region. A recommended magnet layout, including the magnet strength as well as the resultant particle trajectories, is shown in Figure 7A.

The predicted olfactory dosage in the 3-D nose model with the recommended magnet layout is shown in Figure 7B. Similar to the 2-D case, magnetophoretic guidance significantly improves olfactory dosages, and that point-release is superior to the conventional release from the entire nostril. With appropriate magnetophoretic guidance, the delivered olfactory dose can be one or even two orders of magnitude higher compared to that without magnetophoretic guidance (45% in Figure 7B vs. < 0.1% in Figure 3). Figure 7B also shows the variation of the 3-D olfactory dosage as a function of carrier droplet size. There is negligible olfactory deposition for d'p < 10 µm or d'p' > 20 µm; the former is due to weak magnetic responsiveness, while the latter is due to the high inertia loss to the anterior nose. The optimal olfactory deposition comes from aerosols in the range of 13 − 17 µm, with a median size of 15 µm.

Figure 1
Figure 1. Human Nose Model and the Olfactory Region that is Located at the very top of the Nasal Cavity. The complex structure of the nose prevents effective drug delivery to the olfactory region with standard nasal devices. To study deposition distributions, the MRI-based nose model was divided into different sections. LP: lower passage, UP: upper passage, MM: middle meatus, SM: superior meatus, OR: olfactory region. Please click here to view a larger version of this figure.

Figure 2
Figure 2. Three Olfactory Delivery Protocols. (A) vestibular intubation (B) deep intubation, and (C) magnetophoretic guidance of ferromagnetic particles. For optimal olfactory drug delivery, particles should travel along the middle plane of the nasal passage. Please click here to view a larger version of this figure.

Figure 3
Figure 3. Control Case. (A) airflow streamlines and (B) snapshots of particle motion at varying instants. (C) Deposition pattern is highly heterogeneous, with high particle accumulations in the anterior nose; (D) good agreement is achieved between the numerically predicted and experimental measurements. NP: nasopharynx. Please click here to view a larger version of this figure.

Figure 4
Figure 4. Airflow Streamlines and Particle Depositions in the Vestibular Intubation Protocol. (A) front intubation (B) back intubation. Comparison of the olfactory doses is shown in (C) for 150 nm and 1 µm particles. Please click here to view a larger version of this figure.

Figure 5
Figure 5. Airflow Streamlines and Particle Deposition with Deep Intubation under Three Breathing Conditions. (A) inhalation (B) breath-holding, and (C) exhalation. Comparison of the normalized olfactory doses (mass fraction per cm2) among different protocols is shown in (D). Please click here to view a larger version of this figure.

Figure 6
Figure 6. Magnetic Field and Particle Trajectories in (A) a two-plate channel and (B) an idealized 2-D nose model. A darker color in the proximity of the magnets represents a stronger magnetic field. Please click here to view a larger version of this figure.

Figure 7
Figure 7. Magnetophoretc Guidance in a 3-D Nose Model: (A) magnet layout and particle trajectories, and (B) variation of the olfactory dosages as a function of particle size. Please click here to view a larger version of this figure.

Subscription Required. Please recommend JoVE to your librarian.

Discussion

A coupled image-CFD method was presented in this study that incorporated the image-based model development, quality meshing, airflow simulation, and magnetic particle tracking. Multiple software modules were implemented to this aim, which included functions of segmentation of medical images, reconstruction/meshing of anatomically accurate airway models, and flow-particle simulations. Using this numerical method, performances of three intranasal delivery protocols were tested and compared. Compared to in vitro experiments, this method is more efficient in cost and time; thus a large number of numerical tests can be conducted to identify the optimal delivery protocol25,26. In particular, the coupled image-CFD method generates detailed information on the behavior and fates of drug particles, thereby providing in-depth insights in reducing drug loss in the anterior nose and increasing drug dosages to the target. Furthermore, the coupled image-CFD method developed in this study can be easily modified for intranasal drug delivery to other regions such as paranasal sinuses24. Similar procedures can be followed as outlined in the protocol except the following two procedures. (1) The region of interest that was predefined in 2.1.3 should be changed to the sinus, which can be achieved by following the protocol 1.4. (2) The range of magnet configuration and strength need to be adjusted for sinus drug delivery. The path of a drug particle from the nostril to the sinus is dramatically different from that from the nostril to the olfactory. The magnetic field should be accordingly modified so that the particles can be guided to follow predefined paths. This task can be achieved by following protocol 3.2.1.

There are two critical steps in modeling the olfactory drug delivery with this image-CFD method. First, developing an image-based nose model that is acceptable to flow-particle-simulation software (e.g., Fluent and COMSOL) still remains a challenge. It took more than 60 hr to reconstruct the surface geometry of the current nose model (Protocol 1.3). Second, simulation results show that magnetic particles are very sensitive to magnetic field and particle release position; extensive testing of magnet layout is required before reaching the optimal delivery design (Protocol 3.2.3 and 3.3.2).

All three drug delivery protocols were predicted to give improved olfactory doses; however, the improvement differed among the three methods. The two passive-control protocols (vestibular and deep intubation) appear inadequate to attain sufficient CNS doses without causing significant drug losses to other regions in the nose. Even for the optimal passive-control protocol (i.e., deep intubation under inhalation conditions), the olfactory dosage is still too low (< 0.1%) to be practical for the purpose of direct nose-to-brain delivery. Active controls of drug particles in the nasal cavity are indispensable. Limitations of this study include the assumption of steady flows, rigid airway walls, numerical modeling only, and the use of one nasal airway geometry. Therefore, results of this study cannot account for intersubjective variability. For drug delivery to a different person, the design proposed herein is expected to have lower performance. To achieve the optimal delivery to that specific patient, a personalized design should be formulated based on the patient's nasal geometry.

The proposed olfactory delivery protocol has important implications in direct nose-to-brain drug delivery. Standard nasal devices deliver extremely low doses (< 1%) to the olfactory region, which has forestalled the use of many new genetically engineered drugs for treating CNS disorders such as Alzheimer's disease and brain tumors1,9. The proposed magnetophoretic olfactory delivery is promising to deliver clinically significant dosage to the olfactory region and provides a noninvasive practical method of bypassing the blood-brain barrier. This delivery system can also be readily adapted for delivering drugs to other regions in the nose such as paranasal sinuses, in a different nose model, or for drugs with different physical properties.

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

The authors report no conflicts of interest in this work.

Acknowledgments

This study was funded by Central Michigan University Innovative Research Grant P421071 and Early Career Grant P622911.

Materials

Name Company Catalog Number Comments
MIMICS 13 Materialise Inc, Ann Arbor, MI MR image segmentation
Gambit ANSYS Inc, Canonsburg, PA  Model development
ANSYS ICEMCFD ANSYS Inc, Canonsburg, PA  Meshing
ANSYS Fluent ANSYS Inc, Canonsburg, PA  Fluid and particle simulation
COMSOL Multiphsics COMSOL Inc, Burlington, MA Magnetic particle tracing

DOWNLOAD MATERIALS LIST

References

  1. Mistry, A., Stolnik, S., Illum, L. Nanoparticles for direct nose-to-brain delivery of drugs. Int. J. Pharm. 379 (1), 146-157 (2009).
  2. Alam, S., et al. Development and evaluation of thymoquinone-encapsulated chitosan nanoparticles for nose-to-brain targeting: a pharmacoscintigraphic study. Int. J. Nanomedicine. 7 (11), 5705-5718 (2012).
  3. Shi, H., Kleinstreuer, C., Zhang, Z. Laminar airflow and nanoparticle or vapor deposition in a human nasal cavity model. J. Biomech. Eng. 128 (5), 697-706 (2006).
  4. Si, X., Xi, J., Kim, J., Zhou, Y., Zhong, H. Modeling of release position and ventilation effects on olfactory aerosol drug delivery. Respir. Physiol. Neurobiol. 186 (1), 22-32 (2013).
  5. Si, X., Xi, J., Kim, J. Effect of laryngopharyngeal anatomy on expiratory airflow and submicrometer particle deposition in human extrathoracic airways. Open J. Fluid D. 3 (4), 286-301 (2013).
  6. Xi, J., Longest, P. W. Numerical predictions of submicrometer aerosol deposition in the nasal cavity using a novel drift flux approach. Int. J. Heat Mass Transfer. 51 (23), 5562-5577 (2008).
  7. Illum, L. Nasal drug delivery: new developments and strategies. Drug Discov. Today. 7 (23), 1184-1189 (2002).
  8. El Taoum, K. K., Xi, J., Kim, J. W., Berlinski, A. In vitro evaluation of aerosols delivered via the nasal route. Respir. Care. 60 (7), 1015-1025 (2015).
  9. Misra, A., Kher, G. Drug delivery systems from nose to brain. Curr. Pharm. Biotechnol. 13 (12), 2355-2379 (2012).
  10. Hoekman, J. D., Ho, R. J. Y. Effects of Localized Hydrophilic Mannitol and Hydrophobic Nelfinavir Administration Targeted to Olfactory Epithelium on Brain Distribution. Aaps Pharmscitech. 12 (2), 534-543 (2011).
  11. Corley, R. A., et al. Comparative Computational Modeling of Airflows and Vapor Dosimetry in the Respiratory Tracts of Rat, Monkey, and Human. Toxicol. Sci. 128 (2), 500-516 (2012).
  12. Shi, H., Kleinstreuer, C., Zhang, Z. Modeling of inertial particle transport and deposition in human nasal cavities with wall roughness. J. Aerosol Sci. 38 (4), 398-419 (2007).
  13. Kleinstreuer, C., Zhang, Z., Donohue, J. F. Targeted drug-aerosol delivery in human respiratory system. Annu. Rev. Biomed. Eng. 10 (4), 195-220 (2008).
  14. Kleinstreuer, C., Zhang, Z., Li, Z., Roberts, W. L., Rojas, C. A new methodology for targeting drug-aerosols in the human respiratory system. Int. J. Heat Mass Transfer. 51 (23), 5578-5589 (2008).
  15. Wilson, I. B. The deposition of charged particles in tubes, with reference to the retention of therapeutic aerosols in the human lung. J. Colloid Sci. 2 (2), 271-276 (1947).
  16. Wong, J., Chan, H. -K., Kwok, P. C. L. Electrostatics in pharmaceutical aerosols for inhalation. Ther Deliv. 4 (8), 981-1002 (2013).
  17. Bailey, A. G. The inhalation and deposition of charged particles within the human lung. Journal of Electrostatics. 42 (1), 25-32 (1997).
  18. Xi, J., Si, X. A., Gaide, R. Electrophoretic particle guidance significantly enhances olfactory drug delivery: a feasibility study. PLoS ONE. 9 (1), e86593 (2014).
  19. Martin, A., Finlay, W. Alignment of magnetite-loaded high aspect ratio aerosol drug particles with magnetic fields. Aerosol Sci. Technol. 42 (4), 295-298 (2008).
  20. Dames, P., et al. Targeted delivery of magnetic aerosol droplets to the lung. Nature Nanotechnology. 2 (8), 495-499 (2007).
  21. Xi, J., Longest, P. W. Transport and deposition of micro-aerosols in realistic and simplified models of the oral airway. Ann. Biomed. Eng. 35 (4), 560-581 (2007).
  22. Longest, P. W., Xi, J. Effectiveness of direct Lagrangian tracking models for simulating nanoparticle deposition in the upper airways. Aerosol Sci. Technol. 41 (4), 380-397 (2007).
  23. Xi, J., Zhang, Z., Si, X. A., Yang, J., Deng, W. Optimization of magnetophoretic-guided drug delivery to the olfactory region in a human nose model. Biomech. Model. Mechanobiol. In. , (2015).
  24. Longest, P. W., Hindle, M., Das Choudhuri, S., Xi, J. X. Comparison of ambient and spray aerosol deposition in a standard induction port and more realistic mouth-throat geometry. J. Aerosol Sci. 39 (7), 572-591 (2008).
  25. Xi, J., et al. Design and Testing of Electric-Guided Delivery of Charged Particles to the Olfactory Region: Experimental and Numerical Studies. Curr. Drug Deliv. 13 (9), 1-15 (2015).
  26. Zhou, Y., Guo, M., Xi, J., Irshad, H., Cheng, Y. -S. Nasal deposition in infants and children. Journal of aerosol medicine and pulmonary drug delivery. 27 (2), 110-116 (2014).
  27. Xi, J., Yuan, J. E., Si, X. A., Hasbany, J. Numerical optimization of targeted delivery of charged nanoparticles to the ostiomeatal complex for treatment of rhinosinusitis. Int. J. Nanomedicine. 10 (7), 4847-4861 (2015).

Tags

Keywords: Olfactory Drug Delivery Nasal Airway Modeling Passive And Active Controls Pharmaceutical Aerosols Nose-to-brain Drug Delivery MRI-based 3D Modeling Computational Fluid Dynamics Olfactory Targeting Neurological Drug Delivery Brain Tumor Therapy
Modeling and Simulations of Olfactory Drug Delivery with Passive and Active Controls of Nasally Inhaled Pharmaceutical Aerosols
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Si, X. A., Xi, J. Modeling andMore

Si, X. A., Xi, J. Modeling and Simulations of Olfactory Drug Delivery with Passive and Active Controls of Nasally Inhaled Pharmaceutical Aerosols. J. Vis. Exp. (111), e53902, doi:10.3791/53902 (2016).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

PLAYLIST

  • Research • Medicine
    Estimation of Urinary Nanocrystals in Humans using Calcium Fluorophore Labeling and Nanoparticle Tracking Analysis
  • Research • Medicine
    Development and Evaluation of 3D-Printed Cardiovascular Phantoms for Interventional Planning and Training
  • Research • Medicine
    Human Fetal Blood Flow Quantification with Magnetic Resonance Imaging and Motion Compensation
  • Research • Medicine
    Digital Handwriting Analysis of Characters in Chinese Patients with Mild Cognitive Impairment
  • Research • Medicine
    Segmentation and Linear Measurement for Body Composition Analysis using Slice-O-Matic and Horos
  • Research • Medicine
    Magnetic Resonance Imaging of Multiple Sclerosis at 7.0 Tesla
  • Research • Medicine
    Real-Time Magnetic Resonance Guided Focused Ultrasound for Painful Bone Metastases
  • Research • Medicine
    Isolation of Viable Adipocytes and Stromal Vascular Fraction from Human Visceral Adipose Tissue Suitable for RNA Analysis and Macrophage Phenotyping
  • Research • Medicine
    Obtaining Quality Extended Field-of-View Ultrasound Images of Skeletal Muscle to Measure Muscle Fascicle Length
  • Research • Medicine
    Lung CT Segmentation to Identify Consolidations and Ground Glass Areas for Quantitative Assesment of SARS-CoV Pneumonia
  • Research • Medicine
    Electroretinogram Recording for Infants and Children under Anesthesia to Achieve Optimal Dark Adaptation and International Standards
  • Research • Medicine
    Measurement of Tissue Oxygenation Using Near-Infrared Spectroscopy in Patients Undergoing Hemodialysis
  • Research • Medicine
    Evaluation of Capnography Sampling Line Compatibility and Accuracy when Used with a Portable Capnography Monitor
  • Research • Medicine
    Simultaneous Laryngopharyngeal and Conventional Esophageal pH Monitoring
  • Research • Medicine
    Real-Time Monitoring of Neurocritical Patients with Diffuse Optical Spectroscopies
  • Research • Neuroscience
    Evaluating Postural Control and Lower-extremity Muscle Activation in Individuals with Chronic Ankle Instability
  • Research • Medicine
    Assessment of Dependence in Activities of Daily Living Among Older Patients in an Acute Care Unit
  • Research • Medicine
    Validated LC-MS/MS Panel for Quantifying 11 Drug-Resistant TB Medications in Small Hair Samples
  • Research • Medicine
    International Expert Consensus and Recommendations for Neonatal Pneumothorax Ultrasound Diagnosis and Ultrasound-guided Thoracentesis Procedure
  • Research • Biology
    A Finite Element Approach for Locating the Center of Resistance of Maxillary Teeth
  • Research • Medicine
    Lower Limb Biomechanical Analysis of Healthy Participants
  • Research • Neuroscience
    Assessing Early Stage Open-Angle Glaucoma in Patients by Isolated-Check Visual Evoked Potential
  • Research • Medicine
    Oral Health Assessment by Lay Personnel for Older Adults
  • Research • Medicine
    Determining and Controlling External Power Output During Regular Handrim Wheelchair Propulsion
  • Research • Medicine
    A Whole Body Dosimetry Protocol for Peptide-Receptor Radionuclide Therapy (PRRT): 2D Planar Image and Hybrid 2D+3D SPECT/CT Image Methods
  • Research • Medicine
    Measurement of Carotenoids in Perifovea using the Macular Pigment Reflectometer
  • Research • Medicine
    Assessment of Static Graviceptive Perception in the Roll-Plane using the Subjective Visual Vertical Paradigm
  • Research • Medicine
    Learning Modern Laryngeal Surgery in a Dissection Laboratory
  • Research • Medicine
    DIPLOMA Approach for Standardized Pathology Assessment of Distal Pancreatectomy Specimens
  • Research • Medicine
    A Computerized Functional Skills Assessment and Training Program Targeting Technology Based Everyday Functional Skills
  • Research • Medicine
    Imaging Features of Systemic Sclerosis-Associated Interstitial Lung Disease
  • Research • Medicine
    Integrating Augmented Reality Tools in Breast Cancer Related Lymphedema Prognostication and Diagnosis
  • Research • Medicine
    Ultrasonographic Assessment During Cardiopulmonary Resuscitation
  • Research • Medicine
    Measurement of the Hepatic Venous Pressure Gradient and Transjugular Liver Biopsy
  • Research • Medicine
    Patient Directed Recording of a Bipolar Three-Lead Electrocardiogram using a Smartwatch with ECG Function
  • Research • Medicine
    Traditional Trail Making Test Modified into Brand-new Assessment Tools: Digital and Walking Trail Making Test
  • Research • Medicine
    Use of Magnetic Resonance Imaging and Biopsy Data to Guide Sampling Procedures for Prostate Cancer Biobanking
  • Research • Medicine
    A Fluorescence-based Assay for Characterization and Quantification of Lipid Droplet Formation in Human Intestinal Organoids
  • Research • Medicine
    A Novel Non-invasive Method for the Detection of Elevated Intra-compartmental Pressures of the Leg
  • Research • Medicine
    Quantitative Mapping of Specific Ventilation in the Human Lung using Proton Magnetic Resonance Imaging and Oxygen as a Contrast Agent
  • Research • Neuroscience
    Portable Thermographic Screening for Detection of Acute Wallenberg's Syndrome
  • Research • Medicine
    Use of MRI-ultrasound Fusion to Achieve Targeted Prostate Biopsy
  • Research • Medicine
    Testing of all Six Semicircular Canals with Video Head Impulse Test Systems
  • Research • Medicine
    Protocol and Guidelines for Point-of-Care Lung Ultrasound in Diagnosing Neonatal Pulmonary Diseases Based on International Expert Consensus
  • Research • Neuroscience
    Bilateral Assessment of the Corticospinal Pathways of the Ankle Muscles Using Navigated Transcranial Magnetic Stimulation
  • Research • Medicine
    Targeting Gray Rami Communicantes in Selective Chemical Lumbar Sympathectomy
  • Research • Medicine
    Multi-Modal Home Sleep Monitoring in Older Adults
  • Research • Medicine
    Cardiac Magnetic Resonance for the Evaluation of Suspected Cardiac Thrombus: Conventional and Emerging Techniques
  • Research • Medicine
    Observational Study Protocol for Repeated Clinical Examination and Critical Care Ultrasonography Within the Simple Intensive Care Studies
  • Research • Medicine
    Measurements of Motor Function and Other Clinical Outcome Parameters in Ambulant Children with Duchenne Muscular Dystrophy
  • Research • Medicine
    Assessment of the Efficacy of An Osteopathic Treatment in Infants with Biomechanical Impairments to Suckling
  • Research • Medicine
    Quantification of Levator Ani Hiatus Enlargement by Magnetic Resonance Imaging in Males and Females with Pelvic Organ Prolapse
  • Research • Medicine
    Quantitative [18F]-Naf-PET-MRI Analysis for the Evaluation of Dynamic Bone Turnover in a Patient with Facetogenic Low Back Pain
  • Research • Medicine
    Generation of Human 3D Lung Tissue Cultures (3D-LTCs) for Disease Modeling
  • Research • Medicine
    Proton Therapy Delivery and Its Clinical Application in Select Solid Tumor Malignancies
  • Research • Medicine
    Combining Volumetric Capnography And Barometric Plethysmography To Measure The Lung Structure-function Relationship
  • Research • Medicine
    Two-Dimensional X-Ray Angiography to Examine Fine Vascular Structure Using a Silicone Rubber Injection Compound
  • Research • Medicine
    Preparation, Procedures and Evaluation of Platelet-Rich Plasma Injection in the Treatment of Knee Osteoarthritis
  • Research • Medicine
    Cardiac Magnetic Resonance Imaging at 7 Tesla
  • Research • Medicine
    Semi-quantitative Assessment Using [18F]FDG Tracer in Patients with Severe Brain Injury
  • Research • Medicine
    Handheld Metal Detector Screening for Metallic Foreign Body Ingestion in Children
  • Research • Medicine
    Conducting Maximal and Submaximal Endurance Exercise Testing to Measure Physiological and Biological Responses to Acute Exercise in Humans
  • Research • Medicine
    A Metadata Extraction Approach for Clinical Case Reports to Enable Advanced Understanding of Biomedical Concepts
  • Research • Medicine
    Autonomic Function Following Concussion in Youth Athletes: An Exploration of Heart Rate Variability Using 24-hour Recording Methodology
  • Research • Medicine
    Hydra, a Computer-Based Platform for Aiding Clinicians in Cardiovascular Analysis and Diagnosis
  • Research • Medicine
    Objective Nociceptive Assessment in Ventilated ICU Patients: A Feasibility Study Using Pupillometry and the Nociceptive Flexion Reflex
  • Research • Medicine
    'Boden Food Plate': Novel Interactive Web-based Method for the Assessment of Dietary Intake
  • Research • Medicine
    Anogenital Distance and Perineal Measurements of the Pelvic Organ Prolapse (POP) Quantification System
  • Research • Medicine
    Bedside Ultrasound for Guiding Fluid Removal in Patients with Pulmonary Edema: The Reverse-FALLS Protocol
  • Research • Medicine
    Muscle Imbalances: Testing and Training Functional Eccentric Hamstring Strength in Athletic Populations
  • Research • Medicine
    Isolation of Primary Human Decidual Cells from the Fetal Membranes of Term Placentae
  • Research • Medicine
    Skeletal Muscle Neurovascular Coupling, Oxidative Capacity, and Microvascular Function with 'One Stop Shop' Near-infrared Spectroscopy
  • Research • Medicine
    Collecting Hair Samples for Hair Cortisol Analysis in African Americans
  • Research • Medicine
    In Vivo Morphometric Analysis of Human Cranial Nerves Using Magnetic Resonance Imaging in Menière's Disease Ears and Normal Hearing Ears
  • Research • Medicine
    Measuring the Carotid to Femoral Pulse Wave Velocity (Cf-PWV) to Evaluate Arterial Stiffness
  • Research • Medicine
    Standardized Measurement of Nasal Membrane Transepithelial Potential Difference (NPD)
  • Research • Medicine
    Taste Exam: A Brief and Validated Test
  • Research • Medicine
    Absorption of Nasal and Bronchial Fluids: Precision Sampling of the Human Respiratory Mucosa and Laboratory Processing of Samples
  • Research • Medicine
    Methodology for Sputum Induction and Laboratory Processing
  • Research • Medicine
    Electrophysiological Measurement of Noxious-evoked Brain Activity in Neonates Using a Flat-tip Probe Coupled to Electroencephalography
  • Research • Medicine
    A Detailed Protocol for Physiological Parameters Acquisition and Analysis in Neurosurgical Critical Patients
  • Research • Medicine
    Oral Biofilm Sampling for Microbiome Analysis in Healthy Children
  • Research • Medicine
    Using Retinal Imaging to Study Dementia
  • Research • Medicine
    Application of an Amplitude-integrated EEG Monitor (Cerebral Function Monitor) to Neonates
  • Research • Medicine
    3D Ultrasound Imaging: Fast and Cost-effective Morphometry of Musculoskeletal Tissue
  • Research • Medicine
    The 4-vessel Sampling Approach to Integrative Studies of Human Placental Physiology In Vivo
  • Research • Medicine
    A Component-resolved Diagnostic Approach for a Study on Grass Pollen Allergens in Chinese Southerners with Allergic Rhinitis and/or Asthma
  • Research • Medicine
    A Novel Method: Super-selective Adrenal Venous Sampling
  • Research • Medicine
    A Method for Quantifying Upper Limb Performance in Daily Life Using Accelerometers
  • Research • Medicine
    Non-invasive Assessments of Subjective and Objective Recovery Characteristics Following an Exhaustive Jump Protocol
  • Research • Medicine
    Experimental Protocol of a Three-minute, All-out Arm Crank Exercise Test in Spinal-cord Injured and Able-bodied Individuals
  • Research • Medicine
    Phosphorus-31 Magnetic Resonance Spectroscopy: A Tool for Measuring In Vivo Mitochondrial Oxidative Phosphorylation Capacity in Human Skeletal Muscle
  • Research • Medicine
    Assessment of Pulmonary Capillary Blood Volume, Membrane Diffusing Capacity, and Intrapulmonary Arteriovenous Anastomoses During Exercise
  • Research • Medicine
    Assessment of Child Anthropometry in a Large Epidemiologic Study
  • Research • Medicine
    Video Movement Analysis Using Smartphones (ViMAS): A Pilot Study
  • Research • Medicine
    Network Analysis of Foramen Ovale Electrode Recordings in Drug-resistant Temporal Lobe Epilepsy Patients
  • Research • Medicine
    A Model to Simulate Clinically Relevant Hypoxia in Humans
  • Research • Medicine
    Interictal High Frequency Oscillations Detected with Simultaneous Magnetoencephalography and Electroencephalography as Biomarker of Pediatric Epilepsy
  • Research • Medicine
    Induction and Assessment of Exertional Skeletal Muscle Damage in Humans
  • Research • Medicine
    A Detailed Protocol for Perspiration Monitoring Using a Novel, Small, Wireless Device
  • Research • Medicine
    Drug-Induced Sleep Endoscopy (DISE) with Target Controlled Infusion (TCI) and Bispectral Analysis in Obstructive Sleep Apnea
  • Research • Medicine
    Integrated Compensatory Responses in a Human Model of Hemorrhage
  • Research • Medicine
    Transthoracic Speckle Tracking Echocardiography for the Quantitative Assessment of Left Ventricular Myocardial Deformation
  • Research • Medicine
    Impression Cytology of the Lid Wiper Area
  • Research • Behavior
    A Protocol of Manual Tests to Measure Sensation and Pain in Humans
  • Research • Medicine
    Unbiased Deep Sequencing of RNA Viruses from Clinical Samples
  • Research • Medicine
    A Choroid Plexus Epithelial Cell-based Model of the Human Blood-Cerebrospinal Fluid Barrier to Study Bacterial Infection from the Basolateral Side
  • Research • Medicine
    Isolation and Profiling of MicroRNA-containing Exosomes from Human Bile
  • Research • Medicine
    Generation of Microtumors Using 3D Human Biogel Culture System and Patient-derived Glioblastoma Cells for Kinomic Profiling and Drug Response Testing
  • Research • Medicine
    Ultrasound Assessment of Endothelial Function: A Technical Guideline of the Flow-mediated Dilation Test
  • Research • Medicine
    Using a Laminating Technique to Perform Confocal Microscopy of the Human Sclera
  • Research • Medicine
    Intravenous Endotoxin Challenge in Healthy Humans: An Experimental Platform to Investigate and Modulate Systemic Inflammation
  • Research • Medicine
    Modeling and Simulations of Olfactory Drug Delivery with Passive and Active Controls of Nasally Inhaled Pharmaceutical Aerosols
  • Research • Medicine
    Exosomal miRNA Analysis in Non-small Cell Lung Cancer (NSCLC) Patients' Plasma Through qPCR: A Feasible Liquid Biopsy Tool
  • Research • Medicine
    A Multimodal Imaging- and Stimulation-based Method of Evaluating Connectivity-related Brain Excitability in Patients with Epilepsy
  • Research • Medicine
    Measuring Cardiac Autonomic Nervous System (ANS) Activity in Toddlers - Resting and Developmental Challenges
  • Research • Medicine
    Using Saccadometry with Deep Brain Stimulation to Study Normal and Pathological Brain Function
  • Research • Medicine
    Quantitative Fundus Autofluorescence for the Evaluation of Retinal Diseases
  • Research • Medicine
    Diagnosis of Musculus Gastrocnemius Tightness - Key Factors for the Clinical Examination
  • Research • Medicine
    Stereo-Electro-Encephalo-Graphy (SEEG) With Robotic Assistance in the Presurgical Evaluation of Medical Refractory Epilepsy: A Technical Note
  • Research • Medicine
    Quantitative Magnetic Resonance Imaging of Skeletal Muscle Disease
  • Research • Medicine
    Transcutaneous Microcirculatory Imaging in Preterm Neonates
  • Research • Medicine
    Using an Ingestible Telemetric Temperature Pill to Assess Gastrointestinal Temperature During Exercise
  • Research • Medicine
    Design, Fabrication, and Administration of the Hand Active Sensation Test (HASTe)
  • Research • Medicine
    MRI-guided dmPFC-rTMS as a Treatment for Treatment-resistant Major Depressive Disorder
  • Research • Medicine
    Functional Human Liver Preservation and Recovery by Means of Subnormothermic Machine Perfusion
  • Research • Medicine
    A Multicenter MRI Protocol for the Evaluation and Quantification of Deep Vein Thrombosis
  • Research • Medicine
    Determining The Electromyographic Fatigue Threshold Following a Single Visit Exercise Test
  • Research • Medicine
    Use of Electromagnetic Navigational Transthoracic Needle Aspiration (E-TTNA) for Sampling of Lung Nodules
  • Research • Medicine
    Trabecular Meshwork Response to Pressure Elevation in the Living Human Eye
  • Research • Medicine
    In Vivo, Percutaneous, Needle Based, Optical Coherence Tomography of Renal Masses
  • Research • Medicine
    Establishment of Human Epithelial Enteroids and Colonoids from Whole Tissue and Biopsy
  • Research • Medicine
    Human Brown Adipose Tissue Depots Automatically Segmented by Positron Emission Tomography/Computed Tomography and Registered Magnetic Resonance Images
  • Research • Medicine
    Preparation and Respirometric Assessment of Mitochondria Isolated from Skeletal Muscle Tissue Obtained by Percutaneous Needle Biopsy
  • Research • Medicine
    A Methodological Approach to Non-invasive Assessments of Vascular Function and Morphology
  • Research • Medicine
    Isolation and Immortalization of Patient-derived Cell Lines from Muscle Biopsy for Disease Modeling
  • Research • Medicine
    State of the Art Cranial Ultrasound Imaging in Neonates
  • Research • Medicine
    Measurement of Dynamic Scapular Kinematics Using an Acromion Marker Cluster to Minimize Skin Movement Artifact
  • Research • Medicine
    The Supraclavicular Fossa Ultrasound View for Central Venous Catheter Placement and Catheter Change Over Guidewire
  • Research • Medicine
    Ultrasound Assessment of Endothelial-Dependent Flow-Mediated Vasodilation of the Brachial Artery in Clinical Research
  • Research • Medicine
    Tracking the Mammary Architectural Features and Detecting Breast Cancer with Magnetic Resonance Diffusion Tensor Imaging
  • Research • Medicine
    A Neuroscientific Approach to the Examination of Concussions in Student-Athletes
  • Research • Medicine
    DTI of the Visual Pathway - White Matter Tracts and Cerebral Lesions
  • Research • Medicine
    Collection, Isolation, and Flow Cytometric Analysis of Human Endocervical Samples
  • Research • Medicine
    Fundus Photography as a Convenient Tool to Study Microvascular Responses to Cardiovascular Disease Risk Factors in Epidemiological Studies
  • Research • Medicine
    A Multi-Modal Approach to Assessing Recovery in Youth Athletes Following Concussion
  • Research • Medicine
    Clinical Assessment of Spatiotemporal Gait Parameters in Patients and Older Adults
  • Research • Medicine
    Multi-electrode Array Recordings of Human Epileptic Postoperative Cortical Tissue
  • Research • Medicine
    Collection and Extraction of Saliva DNA for Next Generation Sequencing
  • Research • Medicine
    Fast and Accurate Exhaled Breath Ammonia Measurement
  • Research • Medicine
    Developing Neuroimaging Phenotypes of the Default Mode Network in PTSD: Integrating the Resting State, Working Memory, and Structural Connectivity
  • Research • Medicine
    Two Methods for Establishing Primary Human Endometrial Stromal Cells from Hysterectomy Specimens
  • Research • Medicine
    Assessment of Vascular Function in Patients With Chronic Kidney Disease
  • Research • Medicine
    Coordinate Mapping of Hyolaryngeal Mechanics in Swallowing
  • Research • Medicine
    Network Analysis of the Default Mode Network Using Functional Connectivity MRI in Temporal Lobe Epilepsy
  • Research • Medicine
    EEG Mu Rhythm in Typical and Atypical Development
  • Research • Medicine
    The Multiple Sclerosis Performance Test (MSPT): An iPad-Based Disability Assessment Tool
  • Research • Medicine
    Isolation and Functional Characterization of Human Ventricular Cardiomyocytes from Fresh Surgical Samples
  • Research • Medicine
    Dynamic Visual Tests to Identify and Quantify Visual Damage and Repair Following Demyelination in Optic Neuritis Patients
  • Research • Medicine
    Primary Culture of Human Vestibular Schwannomas
  • Research • Medicine
    Utility of Dissociated Intrinsic Hand Muscle Atrophy in the Diagnosis of Amyotrophic Lateral Sclerosis
  • Research • Medicine
    Lesion Explorer: A Video-guided, Standardized Protocol for Accurate and Reliable MRI-derived Volumetrics in Alzheimer's Disease and Normal Elderly
  • Research • Medicine
    Pulse Wave Velocity Testing in the Baltimore Longitudinal Study of Aging
  • Research • Medicine
    Isolation, Culture, and Imaging of Human Fetal Pancreatic Cell Clusters
  • Research • Medicine
    3D-Neuronavigation In Vivo Through a Patient's Brain During a Spontaneous Migraine Headache
  • Research • Medicine
    A Novel Application of Musculoskeletal Ultrasound Imaging
  • Research • Medicine
    Computerized Dynamic Posturography for Postural Control Assessment in Patients with Intermittent Claudication
  • Research • Medicine
    Collecting Saliva and Measuring Salivary Cortisol and Alpha-amylase in Frail Community Residing Older Adults via Family Caregivers
  • Research • Medicine
    Diffusion Tensor Magnetic Resonance Imaging in the Analysis of Neurodegenerative Diseases
  • Research • Medicine
    Transcriptomic Analysis of Human Retinal Surgical Specimens Using jouRNAl
  • Research • Medicine
    Improved Protocol For Laser Microdissection Of Human Pancreatic Islets From Surgical Specimens
  • Research • Medicine
    Evaluation of Respiratory Muscle Activation Using Respiratory Motor Control Assessment (RMCA) in Individuals with Chronic Spinal Cord Injury
  • Research • Medicine
    Minimal Erythema Dose (MED) Testing
  • Research • Medicine
    Measuring Cardiac Autonomic Nervous System (ANS) Activity in Children
  • Research • Medicine
    Collecting And Measuring Wound Exudate Biochemical Mediators In Surgical Wounds
  • Research • Medicine
    A Research Method For Detecting Transient Myocardial Ischemia In Patients With Suspected Acute Coronary Syndrome Using Continuous ST-segment Analysis
  • Research • Medicine
    Using a Chemical Biopsy for Graft Quality Assessment
  • Research • Medicine
    Characterizing Exon Skipping Efficiency in DMD Patient Samples in Clinical Trials of Antisense Oligonucleotides
  • Research • Medicine
    In Vitro Assessment of Cardiac Function Using Skinned Cardiomyocytes
  • Research • Medicine
    Normothermic Ex Situ Heart Perfusion in Working Mode: Assessment of Cardiac Function and Metabolism
  • Research • Medicine
    Evaluation of Vascular Control Mechanisms Utilizing Video Microscopy of Isolated Resistance Arteries of Rats
  • Research • Medicine
    Bronchoalveolar Lavage (BAL) for Research; Obtaining Adequate Sample Yield
  • Research • Medicine
    Non-invasive Optical Measurement of Cerebral Metabolism and Hemodynamics in Infants
  • Research • Medicine
    Tilt Testing with Combined Lower Body Negative Pressure: a "Gold Standard" for Measuring Orthostatic Tolerance
  • Research • Medicine
    Driving Simulation in the Clinic: Testing Visual Exploratory Behavior in Daily Life Activities in Patients with Visual Field Defects
  • Research • Medicine
    Isolation, Characterization and Comparative Differentiation of Human Dental Pulp Stem Cells Derived from Permanent Teeth by Using Two Different Methods
  • Research • Medicine
    Portable Intermodal Preferential Looking (IPL): Investigating Language Comprehension in Typically Developing Toddlers and Young Children with Autism
  • Research • Medicine
    Intraoperative Detection of Subtle Endometriosis: A Novel Paradigm for Detection and Treatment of Pelvic Pain Associated with the Loss of Peritoneal Integrity
  • Research • Medicine
    The Use of Primary Human Fibroblasts for Monitoring Mitochondrial Phenotypes in the Field of Parkinson's Disease
  • Research • Medicine
    Collection Protocol for Human Pancreas
  • Research • Medicine
    The α-test: Rapid Cell-free CD4 Enumeration Using Whole Saliva
  • Research • Medicine
    The Measurement and Treatment of Suppression in Amblyopia
  • Research • Medicine
    Corneal Donor Tissue Preparation for Endothelial Keratoplasty
  • Research • Medicine
    Quantification of Atherosclerotic Plaque Activity and Vascular Inflammation using [18-F] Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography (FDG-PET/CT)
  • Research • Medicine
    Eye Tracking Young Children with Autism
  • Research • Medicine
    Doppler Optical Coherence Tomography of Retinal Circulation
  • Research • Medicine
    Utilizing Transcranial Magnetic Stimulation to Study the Human Neuromuscular System
  • Research • Medicine
    Detection and Genogrouping of Noroviruses from Children's Stools By Taqman One-step RT-PCR
  • Research • Medicine
    Method to Measure Tone of Axial and Proximal Muscle
  • Research • Medicine
    The Trier Social Stress Test Protocol for Inducing Psychological Stress
  • Research • Medicine
    Probing the Brain in Autism Using fMRI and Diffusion Tensor Imaging
  • Research • Medicine
    Multifocal Electroretinograms
  • Research • Medicine
    Isolation of Human Islets from Partially Pancreatectomized Patients
  • Research • Medicine
    Examining the Characteristics of Episodic Memory using Event-related Potentials in Patients with Alzheimer's Disease
  • Research • Medicine
    Magnetic Resonance Imaging Quantification of Pulmonary Perfusion using Calibrated Arterial Spin Labeling
  • Research • Medicine
    Manual Muscle Testing: A Method of Measuring Extremity Muscle Strength Applied to Critically Ill Patients
  • Research • Medicine
    Expired CO2 Measurement in Intubated or Spontaneously Breathing Patients from the Emergency Department
  • Research • Medicine
    A Protocol for Comprehensive Assessment of Bulbar Dysfunction in Amyotrophic Lateral Sclerosis (ALS)
  • Research • Medicine
    An Investigation of the Effects of Sports-related Concussion in Youth Using Functional Magnetic Resonance Imaging and the Head Impact Telemetry System
  • Research • Medicine
    Corneal Confocal Microscopy: A Novel Non-invasive Technique to Quantify Small Fibre Pathology in Peripheral Neuropathies
  • Research • Medicine
    Methods to Quantify Pharmacologically Induced Alterations in Motor Function in Human Incomplete SCI
  • Research • Medicine
    Multispectral Real-time Fluorescence Imaging for Intraoperative Detection of the Sentinel Lymph Node in Gynecologic Oncology
  • Research • Medicine
    Technique to Collect Fungiform (Taste) Papillae from Human Tongue
  • Research • Medicine
    Assessing Endothelial Vasodilator Function with the Endo-PAT 2000
  • Research • Medicine
    Making Sense of Listening: The IMAP Test Battery
  • Research • Medicine
    An Experimental Paradigm for the Prediction of Post-Operative Pain (PPOP)
  • Research • Biology
    Bioelectric Analyses of an Osseointegrated Intelligent Implant Design System for Amputees
  • Research • Biology
    Demonstration of Cutaneous Allodynia in Association with Chronic Pelvic Pain
  • Get cutting-edge science videos from JoVE sent straight to your inbox every month.

    Waiting X
    Simple Hit Counter