Summary

Cómo construir un vacío Paquete de primavera-transporte para la hilatura de rotor de medidores

Published: April 07, 2016
doi:

Summary

Here we describe how to build a robust spring-transport mechanism for a spinning rotor gauge. This device securely immobilizes the rotor and keeps it under vacuum during transportation. We also describe packaging that minimizes the risk of damage during transport. Tests show our design works for typical shocks during transport.

Abstract

El medidor de rotor de hilado (SRG) es un medidor de alto vacío a menudo usado como un estándar secundario o de transferencia para presiones de vacío en el intervalo de 1,0 x 10 -4 Pa a 1,0 Pa. En esta aplicación, los grupos autónomos son transportados con frecuencia a los laboratorios para calibración. Los eventos pueden ocurrir durante el transporte de que el cambio de las condiciones de la superficie del rotor, cambiando así el factor de calibración. Para asegurar la estabilidad de calibración, un mecanismo de transporte de la primavera a menudo se utiliza para inmovilizar el rotor y mantenerlo bajo vacío durante el transporte. También es importante para el transporte del mecanismo de transporte de resorte usando embalaje diseñado para minimizar el riesgo de daño durante el envío. En este manuscrito, una descripción detallada se da en la forma de construir un sólido mecanismo de transporte de la primavera y el contenedor de transporte. Juntos, forman un paquete de transporte de la primavera. El diseño del envase de transporte de la primavera fue probada usando ensayos de caída y el rendimiento se encontró que era excelente. La presente primavera-TranspORT diseño del mecanismo mantiene el rotor inmovilizado cuando se experimenta choques de varios cientos g (g = 9,8 m / s 2 y es la aceleración debida a la gravedad), mientras que el contenedor de transporte asegura que el mecanismo no experimentará choques mayor que aproximadamente 100 g durante común percances de envío (según la definición de estándares de la industria).

Introduction

El medidor de rotor de hilado (SRG) es un medidor de alto vacío se utiliza para determinar las presiones de vacío en el intervalo de 1,0 x 10 -4 Pa a 1,0 Pa. Se trata fundamentalmente de una bola de acero de rotación que está suspendido entre dos imanes permanentes. Los electroimanes se utilizan para girar, o "spin-up", la pelota a una cierta frecuencia (típicamente 410 Hz); la pelota se deja entonces para girar libremente, pero la velocidad de rotación se reducirá con el tiempo debido a las colisiones de las moléculas de gas en el sistema de vacío con la superficie de la bola. La presión de vacío es decir, que son la tasa de deceleración de la bola de acero o de rotor La figura 1 muestra los elementos esenciales de la SRG:. Rotor, dedal, cabeza con cable de conexión y controlador electrónico. El rotor, o una pelota, está contenida en el cartucho durante el funcionamiento y que normalmente no está a cargo de, ni es visible para el usuario SRG. El dedal está conectado al sistema de vacío. Para hacer funcionar el SRG, la cabeza se desliza sobre el dedal. loscabeza contiene dos imanes permanentes y varios conjuntos de bobinas de alambre usados ​​para la estabilización vertical y horizontal, la conducción del rotor, y la detección de la rotación. El controlador electrónico interpreta la señal de la bobina de detección de modo que una medición de la presión se puede hacer. Para un rotor con las condiciones de superficie ideal, la tasa de desaceleración se relaciona con la presión de vacío por la física fundamental. Para realizar mediciones de presión absoluta usando un SRG, un factor de calibración, conocido como el coeficiente de acomodación efectiva, debe ser determinado. El coeficiente de alojamiento eficaz depende de las condiciones de la superficie reales del rotor, tales como la rugosidad, los gases adsorbidos y los arañazos. Estos factores tiende a ser estable durante el curso de su uso. Detalles adicionales de grupos autónomos se pueden encontrar en otras referencias 1 -. 3

El SRG se utiliza en aplicaciones donde se requieren mediciones de vacío absoluto. Por ejemplo, los laboratorios de calibración a menudoutilizar grupos autónomos como un estándar de vacío absoluto. En este caso, los indicadores de alto vacío se calibran mediante la comparación de su lectura a la de la SRG. A su vez, el estándar SRG debe ser calibrado periódicamente por el envío de la SRG a un laboratorio de calibración primaria de tener su coeficiente de alojamiento volver a determinar. laboratorios de calibración primarios son generalmente Institutos Nacionales de Metrología como el Instituto Nacional de Estándares y Tecnología (NIST). El laboratorio primaria determina el coeficiente de acomodación SRG mediante la comparación de su lectura a un nivel de vacío primario, y luego devuelve el SRG al laboratorio de calibración "secundaria". El SRG también se utiliza como un estándar de transferencia para la comparación de los estándares de calibración entre laboratorios o institutos nacionales de metrología. En esta aplicación, el SRG se transporta nivel nacional o internacional entre los diferentes laboratorios. 4 8 Durante el transporte, los eventos pueden ocurrir que el cambio del coeficiente de acomodación. Antes de shipment, el rotor debe desconectarse de la suspensión y se retira la cabeza; el rotor a continuación, se apoya en la pared interior del dedo de guante. Durante el transporte, la superficie del rotor está sujeta a cambios de la acción mecánica entre el rotor y el dedal debido a las vibraciones y los choques, o la superficie puede cambiar debido a la exposición de la rotor a gas y humedad atmosférica. Estos cambios afectan a la estabilidad a largo plazo del coeficiente de acomodación. Idealmente, el rotor debe permanecer en vacío e inmovilizado durante el transporte.

Históricamente, los grupos autónomos han sido utilizados como patrones de transferencia en las comparaciones clave de las normas de vacío entre los institutos nacionales de metrología, en los grupos autónomos son transportados a nivel internacional muchas veces entre los diversos institutos. 9 Durante una comparación de claves temprana, se encontró que la estabilidad a largo plazo de la coeficiente de alojamiento SRG se podría mejorar mediante la utilización de un mecanismo de transporte de resorte que tanto inmoviliza el rotor y lo mantuvo bajo vacío durante el transporte. 1,10 Desde entonces, el mecanismo de transporte de la primavera ha sido utilizado muchas veces en las comparaciones internacionales clave. Un estudio reciente de los datos históricos mostró que 90% de estas comparaciones tenían estabilidades mejor que 0,75%, y 70% tienen estabilidades de 0,5%. 9 Por lo tanto, el uso de un mecanismo de transporte de la primavera, en la mayoría de los casos, producir una estabilidad que es más que suficiente para la mayoría de aplicaciones.

Hasta ahora, ha habido poca orientación en la literatura sobre cómo construir un mecanismo de transporte de la primavera. Las primeras versiones de estos dispositivos se han sabido para fallar para inmovilizar completamente el rotor, debido a una combinación de estar diseñado insuficiente para la robustez y la manipulación no deseada durante el envío. Estas primeras lecciones muestran que es importante tanto para construir un sólido mecanismo de transporte de la primavera, y para empaquetar adecuadamente de una manera que minimice los golpes durante el transporte. Este punto más adelante es crítica, pero a menudo ignorada. Aquí vamos a describe la construcción de un sólido mecanismo de transporte de la primavera, además de un paquete de transporte construido adecuadamente. Nuestro diseño se basa en algunos principios sencillos, probados, de ingeniería que permiten la construcción de un paquete de transporte de la primavera duradero que minimiza la posibilidad de fallo durante el transporte. También describimos nuestras pruebas de la solidez de nuestro diseño. Los detalles adicionales de los métodos de ensayo se pueden encontrar en Fedchak et al. (2015). 11

Protocol

Piezas 1. Procura no personalizados para el mecanismo de transporte de la primavera Adquirir los muelles, barra roscada y separadores, tuercas y arandelas. Estos elementos se enumeran en la Lista de materiales específicos / Equipo. Compra los resortes y los separadores antes de fabricar el soporte de bola. Utilizar el acero inoxidable 18-8 (excepto 303), o preferiblemente de acero inoxidable 316, para todos los materiales. Procurar rotor. El rotor es un 4.5 mm de rodamiento de bolas de diámetro de…

Representative Results

Todos los componentes de SRG comercial se muestran en la Figura 1. Esto incluye el rotor, dedal, la cabeza que contiene los imanes permanentes y bobinas de alambre utilizados para la suspensión y la recogida, y el controlador electrónico. El pequeño muelle que se muestra (Figura 1c) se utiliza para retener la bola en el cartucho; este muelle de retención no se utiliza en el mecanismo de transporte de la primavera. El controlador comercial y la cabeza…

Discussion

El objetivo fue diseñar un mecanismo de transporte de resorte con una fuerza de retención suficiente de manera que el rotor quedaría inmovilizado durante el transporte. El diseño de un sólido mecanismo de transporte de resorte no es suficiente para asegurar el rotor permanecerá inmovilizada porque, por ejemplo, dejando caer el mecanismo de la altura de altura sobre una superficie dura puede producir un enorme shock. La fuerza sobre el rotor se puede reducir en gran medida por el envasado del mecanismo de transport…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Los autores agradecen la ayuda del NIST imágenes de neutrones instrumento de instalación científico Dr. Daniel Hussey para ayudarnos con las radiografías de neutrones.

Materials

Spring, 3 N/m Lee Spring (www.leespring.com) LC 042C 18 S316 Outside diameter 0.240 in, Wire Diameter 0.042 in, Rate 17.1 lb/in, Free Length 2.25 in, Number of Coils 29.3  
8-32 threaded rod, 316 stainless steel McMaster-Carr (www.mcmaster.com) 90575A260 Type 316 Stainless Steel Fully Threaded Stud 8-32 Thread, 3" Length.  Cut to length specified in protocol
standoffs, 8-32 Screw Size McMaster-Carr (www.mcmaster.com) 91125A140 18-8 Stainless Steel Female Threaded Round Standoff, 1/4" OD, 1/4" Length, 8-32 Screw Size
nuts, 8-32 McMaster-Carr (www.mcmaster.com) 90205A309 316 SS Undersized Machine Screw Hex Nut 8-32 Thread Size, 1/4" Width, 3/32" Height
Split Lock-Washers, 316 Stainless Steel McMaster-Carr (www.mcmaster.com) 92147A425 Type 316 Stainless Steel Split Lock Washer NO. 8 Screw Size, .3" OD, .04" min Thick
Steel Rotor McMaster-Carr (www.mcmaster.com) 9292K38  Bearing-Quality E52100 Alloy Steel, Hardened Ball, 4.5 mm Diameter
Right-Angle Valve VAT Valve (www.vatvalve.com) 54132-GE02-0001 Easy-close all-metal angle valve, DN 40 (1.5")
Shipping Container Allcases, Reekstin & Associates (www.allcases.com) REAL1616-1205 Zinc Hardware w/Zinc Handles, Rotationally Molded, light-weight, high-impact, Polyethylene Case with protected recessed hardware.  15.75" X 15.88" X 16.45"
Ester Foam Carry Cases Plus (www.carrycasesplus.com) ES-PAD 3" Thick 3" Thick, 2lb Charcoal Ester Foam Pad, 24" x 27". 
Ester Foam Carry Cases Plus (www.carrycasesplus.com) ES-PAD 1" Thick 1" Thick, 2lb Charcoal Ester Foam Pad, 24" x 27". 
Egg-carton ester foam Carry Cases Plus (www.carrycasesplus.com) ES-CONV ES-CONV, 2lb, 24" x 27" x 1 1/2".  "egg-crate" ester foam. 
Foam Cutout, PE foam Willard Packaging Co. (www.willardpackaging.com) Custom Foam Cutout.
Spinning Rotor Gauge  MKS Instruments (www.mks.com) SRG-3 Controller, head, and thimble.  Custom thimble must be used for the spring-transport mechanism
Custom thimble MDC vacuum Inc. (www.mdcvacuum.com) drawing must be submitted for custom part
Detergent Fisher Scientific Co (www.fischersci.com) 04-320-4 Sparkleen 1 Detergent
Acetone Fisher Scientific Co (www.fischersci.com) A18-S4 Acetone (Certified ACS)
Ethanol Warner-Graham Company (www.warnergraham.com) 190 proof USP 190 Proof USP ethyl alcohol
Bolt set for valve Kurt J. Lesker (www.lesker.com) TBS25028125P  B,N&W SET,12 POINT,(25)1/4-28X 1.25"FOR 2.75"THRU,SILVER PLAT 
Silver-plated copper gaskets Kurt J. Lesker (www.lesker.com) GA-0275LBNSP
Spring Assembly (welding) Omley Industries, Inc. (www.omley.com) N/A The machine work and welding were done in NIST's shop. However, Omley industries was used as an alternative for welding the spring assembly.

References

  1. Fremerey, J. K. The spinning rotor gauge. J. Vac. Sci. Technol. A. 3 (3), 1715-1720 (1985).
  2. Jousten, K., Jousten, K. Chapter 13, Total Pressure Vacuum Gauges. Handbook of Vacuum Technology. , 573-583 (2008).
  3. Berg, R. F., Fedchak, J. A. NIST Calibration Services for Spinning Rotor Gauge Calibrations. NIST Special Publication. , 250-293 (2015).
  4. Messer, G., et al. Intercomparison of Nine National High-vacuum Standards under the Auspices of the Bureau International des Poids et Mesures. Metrologia. 26, 183-195 (1989).
  5. Jousten, K., et al. <a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Search&doptcmdl=Citation&defaultField=Title+Word&term=Results+of+the+regional+key+comparison+Euromet.M.P-K1.b+in+the+pressure+range+from+3+x+10-4+Pa+to+0.9+Pa.”>Results of the regional key comparison Euromet.M.P-K1.b in the pressure range from 3 x 10-4 Pa to 0.9 Pa. Metrologia. 42 (1A), 07001 (2005).
  6. Jousten, K., Santander Romero, L. A., Torres Guzman, J. C. <a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Search&doptcmdl=Citation&defaultField=Title+Word&term=Results+of+the+key+comparison+SIM-Euromet.M.P-BK3+(bilateral+comparison)+in+the+pressure+range+from+3+x+10-4+Pa+to+0.9+Pa.”>Results of the key comparison SIM-Euromet.M.P-BK3 (bilateral comparison) in the pressure range from 3 x 10-4 Pa to 0.9 Pa. Metrologia. 42 (1A), 07002 (2005).
  7. Yoshida, H., Arai, K., Akimichi, H., Hong, S. S., Song, H. W. <a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Search&doptcmdl=Citation&defaultField=Title+Word&term=Final+report+on+key+comparison+APMP.M.P-K3:+Absolute+pressure+measurements+in+gas+from+3+x+10-6+Pa+to+9+x+10-4+Pa.”>Final report on key comparison APMP.M.P-K3: Absolute pressure measurements in gas from 3 x 10-6 Pa to 9 x 10-4 Pa. Metrologia. 48 (1A), 07013 (2011).
  8. Fedchak, J. A., Bock, T. h., Jousten, K. <a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Search&doptcmdl=Citation&defaultField=Title+Word&term=Bilateral+key+comparison+CCM.P-K3.1+for+absolute+pressure+measurements+from+3+x+10-6+Pa+to+9+x+10-4+Pa.”>Bilateral key comparison CCM.P-K3.1 for absolute pressure measurements from 3 x 10-6 Pa to 9 x 10-4 Pa. Metrologia. 51 (1A), 07005 (2014).
  9. Fedchak, J. A., Arai, K., Jousten, K., Setina, J., Yoshida, H. Recommended practices for the use of spinning rotor gauges in inter-laboratory comparisons. Measurement. 66, 176-183 (2015).
  10. Rohl, P., Jitschin, W. Performance of the spinning rotor gauge with a novel transport device as a transfer standard for high vacuum. Vacuum. 38 (7), 507-509 (1988).
  11. Fedchak, J. A., Scherschligt, J., Sefa, M., Phandinh, N. Building a spring-transport package for spinning rotor gauges. J. Vac. Sci. Technol. A. 33 (3), (2015).
  12. Hussey, D. S., Jacobson, D. L., Arif, M., Coakley, K. J., Vecchia, D. F. In Situ Fuel Cell Water Metrology at the NIST Neutron Imaging Facility. J. Fuel Cell Sci. Technol. 7 (2), 021024 (2010).
  13. Chang, R. F., Abbott, P. J. Factors affecting the reproducibility of the accommodation coefficient of the spinning rotor gauge. J. Vac. Sci. Technol. A. 25 (6), 1567-1576 (2007).
check_url/53937?article_type=t

Play Video

Cite This Article
Fedchak, J. A., Scherschligt, J., Sefa, M. How to Build a Vacuum Spring-transport Package for Spinning Rotor Gauges. J. Vis. Exp. (110), e53937, doi:10.3791/53937 (2016).

View Video