Summary

盖玻片序贯应用评估鼠标透镜的抗压刚度:应变和形态分析

Published: May 03, 2016
doi:

Summary

Age-related increases in eye lens stiffness are linked to presbyopia. This protocol describes a simple, cost-effective method for measuring mouse lens stiffness. Mouse lenses, like human lenses, become stiffer with age. This method is precise and can be adapted for lenses from larger animals.

Abstract

眼透镜是透明的器官,折射和光聚焦,以形成在视网膜上的清晰图像。在人类中,睫状肌收缩变形的透镜,从而增加在透镜“光功率集中于附近的物体,被称为住宿的方法。在镜头的刚度与年龄相关的变化都与老花眼​​,在适应镜头的能力降低,以及由此延伸,需要老花镜。尽管鼠标镜头不适合或开发老花眼,小鼠模型可以为理解镜头病症的宝贵基因工具,并在小鼠中观察到加速老化能够在镜头年龄相关的变化研究。这个协议表明用于确定鼠标透镜刚度,用玻璃盖玻片依次施加压缩负荷增大到透镜的简单,精确和成本效益的方法。有代表性的数据证实,鼠标透镜随着年龄的增长变得更硬,像人类的镜头。这种方法是高度可重复的,并且可以潜在地扩大到从较大的动物机械地测试镜片。

Introduction

The lens is a transparent and avascular organ in the anterior chamber of the eye that is responsible for fine focusing of light onto the retina. A clear basement membrane, called the lens capsule, surrounds a bulk of elongated fiber cells covered by an anterior monolayer of epithelial cells1,2. Life-long growth of the lens depends on the continuous proliferation and differentiation of epithelial cells at the lens equator into new fiber cells that are added onto previous generations of fiber cells in a concentric manner2. Over time, lens fiber cells undergo compaction, resulting in a rigid center in the middle of the lens called the nucleus1. Accommodation, defined as a dioptric change in the optical power of the eye, occurs in humans when the ciliary muscles contract to deform the lens and allow a true increase in optical power to focus on near objects3-5. In the unaccommodated eye, the lens is held in a relatively flattened state due to tension from zonular fibers. When the ciliary muscles contract, the tension on the lens is released, leading to decreased lens equatorial diameter and increased axial thickness. Age-related changes in the lens cause presbyopia, a progressive loss of lens accommodation, which leads to the need for reading glasses.

Several studies have linked presbyopia to age-related increase in the intrinsic stiffness of the lens6-11. Stiffness is defined as the resistance of an elastic object to deform under applied load. A variety of methods have been used to examine stiffness of human lenses, including spin compression12-14, actuator compression15, probe indentation16, dynamic mechanical analysis 6,10 and bubble-based acoustic radiation force17. While mouse lenses do not accommodate or develop presbyopia, mouse models for lens pathologies are valuable tools because mice are less expensive than larger animals, well characterized genetically and undergo accelerated age-related changes due to rapid aging. A handful of studies have examined mouse lens stiffness with compression methods and demonstrated changes in lens stiffness due to aging or targeted genetic disruptions18-21. Thus, mouse lenses are good models for studying age-related changes in lens stiffness.

This protocol describes a simple and inexpensive, yet precise and reproducible, compression method for determining mouse lens stiffness based on application of glass coverslips onto the lens in conjunction with photographing the lens through a dissection microscope and mirror. This method yields robust strain and morphometric data with an easily fabricated and assembled apparatus. The representative results confirm that mouse lenses increase in stiffness with age.

Protocol

所有动物的程序均按照建议的指南中照顾和实验动物使用由卫生和批准议定书下国家研究院​​的机构动物护理和使用委员会在斯克里普斯研究所进行。 1.解剖镜根据健康“指南实验动物的护理和使用”的国家机构和认可机构使用动物的协议安乐死的建议只。 去核的使用弯钳小鼠眼球。按压围绕与镊子眼组织带来的眼睛从插座中,然后从与镊子插座摘去眼。在…

Representative Results

刚度和2-,4-和8个月大的小鼠的镜片的尺寸进行了测量。小鼠从TSRI动物育种设施获得的纯C57BL6菌株背景所有野生型动物,并且每一个透镜装载有1至10个盖玻片。轴向和赤道株计算为通过测量透镜的轴向和赤道直径在加入每个盖玻片的后,再归一直径为相应的卸载每个直径变化的施加载荷的功能。从每个年龄八个透镜进行了测试,结果表示为平均值±标准误差。如图先前…

Discussion

使用这种方法来衡量镜片硬度时,有几个关键因素。 ( – 8.5°8)相对于所述腔室(θ)的底部第一,盖玻片在略微倾斜的角度施加到透镜。这将适用于负载的非常小的组分平展,而不是轴​​向。然而,这种赤道负载可以忽略不计,因为罪θ≈0.1 19。如果此方法适于大透镜,盖玻片到腔室的底部的角将需要被测量以确定赤道负载是否应计入应变计算。其次,它是重要的,以允许透镜到加?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by National Eye Institute Grant R01 EY017724 (VMF) and National Institute of Arthritis and Musculoskeletal and Skin Diseases Grant K99 AR066534 (DSG).

Materials

Fine tip straight forceps Fine Scientific Tools 11252-40
Microdissection scissors, straight edge Fine Scientific Tools 15000-00
Curved forceps Fine Scientific Tools 11272-40
Seizing forceps Hammacher HSC 702-93 Optional
Dissection dish Fisher Scientific 12565154
60mm petri dish Fisher Scientific 0875713A
1X phosphate buffered saline (PBS) Life Technologies 14190
18mm x 18mm glass coverslips Fisher Scientific 12-542A
Measurement chamber with divots to hold lenses Custom-made (see Figure 1)
Right-angle mirror Edmund Optics 45-591
Light source Schott/Fostec 8375
Illuminated dissecting microscope Olympus SZX-ILLD100 With SZ-PT phototube
Digital camera Nikon Coolpix 990

References

  1. Lovicu, F. J., Robinson, M. L. . Development of the ocular lens. , (2004).
  2. Piatigorsky, J. Lens differentiation in vertebrates. A review of cellular and molecular features. Differentiation. 19 (3), 134-153 (1981).
  3. Glasser, A. Restoration of accommodation: surgical options for correction of presbyopia. Clin Exp Optom. 91 (3), 279-295 (2008).
  4. Keeney, A. H., Hagman, R. E., Fratello, C. J. . Dictionary of ophthalmic optics. , (1995).
  5. Millodot, M. . Dictionary of optometry and visual science. 7, (2009).
  6. Heys, K. R., Cram, S. L., Truscott, R. J. Massive increase in the stiffness of the human lens nucleus with age: the basis for presbyopia. Mol Vis. 10, 956-963 (2004).
  7. Heys, K. R., Friedrich, M. G., Truscott, R. J. Presbyopia and heat: changes associated with aging of the human lens suggest a functional role for the small heat shock protein, alpha-crystallin, in maintaining lens flexibility. Aging Cell. 6 (6), 807-815 (2007).
  8. Pierscionek, B. K. Age-related response of human lenses to stretching forces. Exp Eye Res. 60 (3), 325-332 (1995).
  9. Glasser, A., Biometric Campbell, M. C. optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia. Vision Res. 39 (11), 1991-2015 (1999).
  10. Weeber, H. A., van der Heijde, R. G. On the relationship between lens stiffness and accommodative amplitude. Exp Eye Res. 85 (5), 602-607 (2007).
  11. Weeber, H. A., et al. Dynamic mechanical properties of human lenses. Exp Eye Res. 80 (3), 425-434 (2005).
  12. Fisher, R. F. Elastic properties of the human lens. Exp Eye Res. 11 (1), 143 (1971).
  13. Krueger, R. R., Sun, X. K., Stroh, J., Myers, R. Experimental increase in accommodative potential after neodymium: yttrium-aluminum-garnet laser photodisruption of paired cadaver lenses. Ophthalmology. 108 (11), 2122-2129 (2001).
  14. Burd, H. J., Wilde, G. S., Judge, S. J. An improved spinning lens test to determine the stiffness of the human lens. Exp Eye Res. 92 (1), 28-39 (2011).
  15. Glasser, A., Campbell, M. C. Presbyopia and the optical changes in the human crystalline lens with age. Vision Res. 38 (2), 209-229 (1998).
  16. Pau, H., Kranz, J. The increasing sclerosis of the human lens with age and its relevance to accommodation and presbyopia. Graefes Arch Clin Exp Ophthalmol. 229 (3), 294-296 (1991).
  17. Hollman, K. W., O’Donnell, M., Erpelding, T. N. Mapping elasticity in human lenses using bubble-based acoustic radiation force. Exp Eye Res. 85 (6), 890-893 (2007).
  18. Baradia, H., Nikahd, N., Glasser, A. Mouse lens stiffness measurements. Exp Eye Res. 91 (2), 300-307 (2010).
  19. Gokhin, D. S., et al. Tmod1 and CP49 synergize to control the fiber cell geometry, transparency, and mechanical stiffness of the mouse lens. PLoS One. 7 (11), e48734 (2012).
  20. Sindhu Kumari, S., et al. Role of Aquaporin 0 in lens biomechanics. Biochem Biophys Res Commun. , (2015).
  21. Fudge, D. S., et al. Intermediate filaments regulate tissue size and stiffness in the murine lens. Invest Ophthalmol Vis Sci. 52 (6), 3860-3867 (2011).
  22. Kuszak, J. R., Mazurkiewicz, M., Zoltoski, R. Computer modeling of secondary fiber development and growth: I. Nonprimate lenses. Mol Vis. 12, 251-270 (2006).
  23. Scarcelli, G., Kim, P., Yun, S. H. In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy. Biophys J. 101 (6), 1539-1545 (2011).
check_url/53986?article_type=t

Play Video

Cite This Article
Cheng, C., Gokhin, D. S., Nowak, R. B., Fowler, V. M. Sequential Application of Glass Coverslips to Assess the Compressive Stiffness of the Mouse Lens: Strain and Morphometric Analyses. J. Vis. Exp. (111), e53986, doi:10.3791/53986 (2016).

View Video