Summary

急性心肌梗死的猪模型主要成果评估

Published: October 14, 2016
doi:

Summary

可靠和准确的结果评价是临床前的疗法转化为临床治疗的关键。目前的论文描述了如何评估猪急性心肌梗死模型的心脏功能和损坏3临床相关的主要成果参数。

Abstract

Mortality after acute myocardial infarction remains substantial and is associated with significant morbidity, like heart failure. Novel therapeutics are therefore required to confine cardiac damage, promote survival and reduce the disease burden of heart failure. Large animal experiments are an essential part in the translational process from experimental to clinical therapies. To optimize clinical translation, robust and representative outcome measures are mandatory. The present manuscript aims to address this need by describing the assessment of three clinically relevant outcome modalities in a pig acute myocardial infarction (AMI) model: infarct size in relation to area at risk (IS/AAR) staining, 3-dimensional transesophageal echocardiography (TEE) and admittance-based pressure-volume (PV) loops. Infarct size is the main determinant driving the transition from AMI to heart failure and can be quantified by IS/AAR staining. Echocardiography is a reliable and robust tool in the assessment of global and regional cardiac function in clinical cardiology. Here, a method for three-dimensional transesophageal echocardiography (3D-TEE) in pigs is provided. Extensive insight into cardiac performance can be obtained by admittance-based pressure-volume (PV) loops, including intrinsic parameters of myocardial function that are pre- and afterload independent. Combined with a clinically feasible experimental study protocol, these outcome measures provide researchers with essential information to determine whether novel therapeutic strategies could yield promising targets for future testing in clinical studies.

Introduction

减少射血分数(HFREF)心脏衰竭占所有心脏衰竭病例的50%,估计影响1 -人的2%,在西方世界1。其最常见的病因是急性心肌梗死(AMI)。由于AMI后急性死亡率,由于认识的提高和改进的治疗方案显著下降,重点已经转向了慢性后遗症;其中最突出的HFREF 2,3。连同增加的医疗费用4,心脏衰竭的日益流行强调需要新颖的诊断和治疗方法,它可以在不利的重构的高度平移猪模型如前所述5进行研究AMI后。

不利的重塑两者,决定因素( 例如,梗死大小)和功能评估( 例如 ,超声心动图)经常用于新疗法功效测试,指示相对的需要iable和相对便宜的方法。目前本文的目的是通过引入重要和可靠结果的措施为在急性心肌梗死的猪模型中的功效的测试,以满足这一需要。这些措施包括在风险(AAR),3D食管超声心动图(3D-TEE)和详细的基于准入压量(PV)循环收购涉及面积心肌梗死面积(IS)。

梗塞面积是不利的重塑和生存的AMI后6的主要决定因素。尽管缺血心肌可能挽救可逆损伤的心肌细胞,并限制梗塞尺寸的及时再灌注,灌注本身导致通过氧化应力的产生和不成比例的炎症反应的其他损害(缺血再灌注损伤(IRI))7。因此,IRI已被鉴定为有希望的治疗靶标。新的治疗的减小梗塞尺寸的能力是通过相对于评估梗死大小量化在风险(AAR)的区域。 AAR量化是强制性的,以校正在动物模型中的冠状动脉解剖的个体间变异性,作为较大AAR导致较大的绝对梗塞大小。因为梗塞大小,直接关系到心脏功能和心肌收缩力,在AAR变化可以影响无关研究治疗方式8的结果的措施。

三维食管超声心动图(3D-TEE)是测量心脏功能非侵入性安全,可靠,最重要的是,在临床应用廉价的方法。而经胸超声心动图(TTE)的图像不限于猪9 2D胸骨旁长期和短轴视图,3D-TEE可以用来获得左心室的完整的三维图像。因此,它不需要左心室(LV)卷的数学近似,如修改后的辛普森的第10条。后者达不到科尔的ectly估计左室重构后左室容积由于缺乏圆柱形几何11。此外,3D-TEE超过心外膜超声优选,因为它不要求手术干预,其中已经观察到施加在本模型12的心脏保护作用。虽然对于心肌功能的评估使用2D-TEE的已13,14之前进行了说明,关于心室几何限制是类似于在2D-TTE观察取决于LV重塑的程度。因此,较大的梗塞(因而心脏衰竭的可能性越高),越容易二维测量成为由不正确的几何假设有缺陷和需要3D技术越高。

尽管如此,大多数成像方式在他们的评估心肌的固有功能特性的能力的限制。环光伏提供此类相关的其他信息,因此他们的收购在下面详细描述。

Protocol

所有的动物实验是由伦理委员会对大学医学中心的乌得勒支动物实验(荷兰乌得勒支)批准,并符合“指南照料和使用实验动物的”。 注:协议来执行闭胸气囊遮挡不是当前手稿的一部分,并在别处详细5进行说明。总之,猪(60 – 70公斤)进行左前降支(LAD)的中央部的75分钟腔内球囊闭塞。 既,三维食管超声心动图(3D-TEE)和压力 – 体积(PV)…

Representative Results

3D食管超声心动图 3D食管超声心动图(3D-TEE)可用于全球心脏功能的评估。 AMI后,全球心脏功能健康基线值不同。特别是,左心室射血分数(LVEF)从59±4%至37±6%再灌注后的一周(10)(GPJ面包车豪特,2015)后降低。在行程容积(74±11对47±8毫升)的收缩末期容积(51±7 82±13毫升)和下降的增加,也观察到?…

Discussion

心脏重塑在很大程度上取决于心肌梗死面积和心肌梗死的质量修复6,26。评估以标准化的方式前,本手稿提供伊文思蓝与体外 TTC染色,已验证和广泛使用8,16,27,28联合体内输注优雅方法。这种方法允许在危险中(AAR)就AAR 16的区域的量化和梗塞大小。目前的做法降低了染料扩散到AAR,梗塞区域或风险 – 与malpositioning – 乳头肌的,因为它不要求心肌穿刺。此外,?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors gratefully acknowledge Marlijn Jansen, Joyce Visser, Grace Croft, Martijn van Nieuwburg, Danny Elbersen and Evelyn Velema for their excellent technical support during the animal experiments.

Materials

3-dimensional transesophageal echocardiography
iE33 ultrasound device Philips
X7-2t transducer Philips
Aquasonic® 100 ultrasound transmission gel Parker Laboratories Inc. 01-34 Alternative product can be used
Battery handle type C (laryngoscope handle) Riester 12303
Ri-Standard Miller blade MIL 4 (laryngoscope blade) Riester 12225
Qlab 10.0 (3DQ Advanced) analysis software Philips
Name Company Catalog Number Comments
Pressure-volume loop acquisition
Cardiac defibrillator Philips
0.9% saline Braun
8F Percutaneous Sheath Introducer Set Arrow CP-08803 Alternative product can be used
9F Radifocus® Introducer II Standard Kit  Terumo RS*A90K10SQ Alternative product can be used
8F Fogarty catheter Edward Life Sciences 62080814F Alternative product can be used
7F Criticath™ SP5107H TD catheter (Swan-Ganz) Becton Dickinson (BD) 680078 Alternative product can be used
Ultraview SL Patient Monitor and Invasive Command Module (external cardiac output device) Spacelabs Healthcare 91387 Alternative product can be used
ADVantage system™ Transonic SciSense
7F tetra-polar admittance catheter (7.0 VSL Pigtail / no lumen) Transonic SciSense
Multi-channel acquisition system (Iworx 404) Iworx
Labscribe V2.0 analysis software Iworx Alternative product can be used
Name Company Catalog Number Comments
Infarct size / area-at-risk quantification
Diathermy Alternative product can be used
Lebsch knife Alternative product can be used
Hammer Alternative product can be used
Bone marrow wax Syneture Alternative product can be used
Klinkenberg scissors Alternative product can be used
Retractor Alternative product can be used
Surgical scissors
7F Percutaneous Sheath Introducer Set  Arrow CP-08703 Alternative product can be used
8F Percutaneous Sheath Introducer Set  Arrow CP-08803 Alternative product can be used
7F JL4 guiding catheter  Boston Scientific H749 34357-662 Alternative product can be used
8F JL4 guiding catheter  Boston Scientific H749 34358-662  Alternative product can be used
COPILOT Bleedback Control Valves  Abbott Vascular 1003331 Alternative product can be used
BD Connecta™  Franklin Lakes 394995 Alternative product can be used
Contrast agent Telebrix
Persuader 9 Steerable Guidewire 9 (0.014", 180 cm, straight tip), hydrophilic coating Medtronic Inc. 9PSDR180HS Alternative product can be used
SAPPHIRE™ Coronary Dilatation Catheter (PTCA balloon suitable for the size of the particular coronary artery (2.75 – 3.25 mm)) OrbusNeich 103-3015 Alternative product can be used
Evans Blue  Sigma-Aldrich E2129-100G Toxic. Alternative product can be used
2,3,5-triphenyl-tetrazolium chloride (TTC) Sigma-Aldrich T8877-100G Irritant. Alternative product can be used
9V battery
Ruler
Photocamera Sony
ImageJ National Institutes of Health Alternative product can be used

References

  1. Mosterd, A., Hoes, A. W. Clinical epidemiology of heart failure. Heart. 93 (9), 1137-1146 (2007).
  2. Nichols, M., et al. . European Cardiovascular Disease Statistics. , (2012).
  3. Krumholz, H. M., et al. Reduction in Acute Myocardial Infarction Mortality in the United States. JAMA. 302 (7), 767-773 (2010).
  4. Go, A. S., et al. Heart disease and stroke statistics – 2013 update: A Report from the American Heart Association. Circulation. 127 (1), (2013).
  5. Koudstaal, S., et al. Myocardial infarction and functional outcome assessment in pigs. J. Vis. Exp. (86), e51269 (2014).
  6. Chareonthaitawee, P., Christian, T. F., Hirose, K., Gibbons, R. J., Rumberger, J. A. Relation of initial infarct size to extent of left ventricular remodeling in the year after acute myocardial infarction. J. Am. Coll. Cardiol. 25 (3), 567-573 (1995).
  7. Yellon, D. M., Hausenloy, D. J. Myocardial reperfusion injury. N. Engl. J. Med. 357 (11), 1221-1235 (2007).
  8. Suzuki, Y., Lyons, J. K., Yeung, A. C., Ikeno, F. In vivo porcine model of reperfused myocardial infarction: In situ double staining to measure precise infarct area/area at risk. Catheter Cardiovasc. Interv. 71 (1), 100-107 (2008).
  9. Weidemann, F., et al. Myocardial function defined by strain rate and strain during alterations in inotropic states and heart rate. Am. J. Physiol. Heart Circ. Physiol. 283 (2), H792-H799 (2002).
  10. Mercier, J. C., et al. Two-dimensional echocardiographic assessment of left ventricular volumes and ejection fraction in children. Circulation. 65 (5), 962-969 (1982).
  11. De Jong, R., et al. Cardiac Function in a Long-Term Follow-Up Study of Moderate and Severe Porcine Model of Chronic Myocardial Infarction. Biomed. Res. Int. 2015, 1-11 (2015).
  12. Van Hout, G. P. J., et al. Invasive surgery reduces infarct size and preserves cardiac function in a porcine model of myocardial infarction. J. Cell. Mol. Med. , 2655-2663 (2015).
  13. Meybohm, P., et al. Assessment of left ventricular systolic function during acute myocardial ischemia: A comparison of transpulmonary thermodilution and transesophageal echocardiography. Minerva Anestesiol. 77 (2), 132-141 (2011).
  14. Gruenewald, M., et al. Visual evaluation of left ventricular performance predicts volume responsiveness early after resuscitation from cardiac arrest. Resuscitation. 82 (12), 1553-1557 (2011).
  15. Bolli, R., Becker, L., Gross, G., Mentzer, R., Balshaw, D., Lathrop, D. A. Myocardial protection at a crossroads: The need for translation into clinical therapy. Circ. Res. 95 (2), 125-134 (2004).
  16. Timmers, L., et al. Exenatide reduces infarct size and improves cardiac function in a porcine model of ischemia and reperfusion injury. J. Am. Coll. Cardiol. 53 (6), 501-510 (2009).
  17. Csonka, C., et al. Measurement of myocardial infarct size in preclinical studies. J. Pharmacol. Toxicol. Methods. 61 (2), 163-170 (2010).
  18. Law, R., Katzka, D. A., Baron, T. H. Zenker’s Diverticulum. Clin. Gastroenterol. Hepatol. 12 (11), 1773-1782 (2014).
  19. Philips Healthcare. . QLAB 10.0 Quick Card: 3DQ and 3DQ Adv measurements guide. , (2013).
  20. Transonic. . ADV500 Pressure-Volume Measurement System Use and Care Manual, version 5. , (2006).
  21. Schramm, W. Is the cardiac output obtained from a Swan-Ganz catheter always zero?. J. Clin. Monit. Comput. 22 (6), 431-433 (2008).
  22. iWorx. . LabScribe 3: Software Manual for Pressure-Volume Analyses. , (2014).
  23. Hueper, W. C., Ichniowski, C. T. Toxicopathologic studies on the dye T-1824. Arch. Surg. 48 (1), 17-26 (1944).
  24. Van Hout, G. P. J., et al. Admittance-based pressure-volume loops versus gold standard cardiac magnetic resonance imaging in a porcine model of myocardial infarction. Physiol. Rep. 2 (4), 1-9 (2014).
  25. Burkhoff, D., Mirsky, I., Suga, H. Assessment of systolic and diastolic ventricular properties via pressure-volume analysis: a guide for clinical, translational, and basic researchers. Am. J. Physiol. Heart Circ. Physiol. Heart Circ. Physiol. 289 (2), H501-H512 (2005).
  26. Frangogiannis, N. G. The inflammatory response in myocardial injury, repair, and remodelling. Nat. Rev. Cardiol. 11 (5), 255-265 (2014).
  27. Fishbein, M., et al. Early phase acute myocardial infarct size quantification: validation of the triphenyl tetrazolium chloride tissue enzyme staining technique. Am. Heart. J. 101 (5), 593-600 (1981).
  28. Arslan, F., et al. Treatment with OPN-305, a humanized anti-toll-like receptor-2 antibody, reduces myocardial ischemia/reperfusion injury in pigs. Circ. Cardiovasc. Interv. 5 (2), 279-287 (2012).
  29. Meyns, B., Stolinski, J., Leunens, V., Verbeken, E., Flameng, W. Left ventricular support by Catheter-Mountedaxial flow pump reduces infarct size. J. Am. Coll. Cardiol. 41 (7), 1087-1095 (2003).
  30. Khalil, P. N., et al. Histochemical assessment of early myocardial infarction using 2,3,5-triphenyltetrazolium chloride in blood-perfused porcine hearts. J. Pharmacol. Toxicol. Methods. 54 (3), 307-312 (2006).
  31. Gardner, B. I., Bingham, S. E., Allen, M. R., Blatter, D. D., Anderson, J. L. Cardiac magnetic resonance versus transthoracic echocardiography for the assessment of cardiac volumes and regional function after myocardial infarction: an intrasubject comparison using simultaneous intrasubject recordings. Cardiovasc. Ultrasound. 7, 38 (2009).
  32. Santos-Gallego, C., et al. 3D-Echocardiography Demonstrates Excellent Correlation With Cardiac Magnetic Resonance for Assessment of Left Ventricular Function and Volumes in a Model of Myocardial Infarction. J. Am. Coll. Cardiol. 59 (13), E1564 (2012).
  33. Keith Jones, ., W, , et al. Peripheral nociception associated with surgical incision elicits remote nonischemic cardioprotection via neurogenic activation of protein kinase C signaling. Circulation. 120, S1-S9 (2009).
  34. Gross, G. J., Baker, J. E., Moore, J., Falck, J. R., Nithipatikom, K. Abdominal Surgical Incision Induces Remote Preconditioning of Trauma (RPCT) via Activation of Bradykinin Receptors (BK2R) and the Cytochrome P450 Epoxygenase Pathway in Canine Hearts. Cardiovasc. Drugs Ther. 25 (6), 517-522 (2011).
  35. Van Hout, G. P. J., de Jong, R., Vrijenhoek, J. E. P., Timmers, L., Duckers, H. J., Hoefer, I. E. Admittance-based pressure-volume loop measurements in a porcine model of chronic myocardial infarction. Exp. Physiol. 98 (11), 1565-1575 (2013).
  36. Sunagawa, K., Maughan, W. L., Burkhoff, D., Sagawa, K. Left ventricular interaction with arterial load studied in isolated canine ventricle. Am. J. Physiol. 245 (5 Pt 1), H773-H780 (1983).
  37. Steendijk, P., Baan, J., Der Velde, E. T. V. a. n., Baan, J. Effects of critical coronary stenosis on global systolic left ventricular function quantified by pressure-volume relations during dobutamine stress in the canine heart. J. Am. Coll. Cardiol. 32 (3), 816-826 (1998).
check_url/54021?article_type=t

Play Video

Cite This Article
Ellenbroek, G. H., van Hout, G. P., Timmers, L., Doevendans, P. A., Pasterkamp, G., Hoefer, I. E. Primary Outcome Assessment in a Pig Model of Acute Myocardial Infarction. J. Vis. Exp. (116), e54021, doi:10.3791/54021 (2016).

View Video