Summary

a硫磺共聚物基质内的免费配体硫化镉纳米粒子的合成

Published: May 01, 2016
doi:

Summary

Herein we present a method to synthesize ligand-free cadmium sulfide (CdS) nanoparticles based on a unique sulfur copolymer. The sulfur copolymer operates as a high temperature solvent and a sulfur source during the nanoparticle synthesis and stabilizes the nanoparticles after the reaction.

Abstract

Aliphatic ligands are typically used during the synthesis of nanoparticles to help mediate their growth in addition to operating as high-temperature solvents. These coordinating ligands help solubilize and stabilize the nanoparticles while in solution, and can influence the resulting size and reactivity of the nanoparticles during their formation. Despite the ubiquity of using ligands during synthesis, the presence of aliphatic ligands on the nanoparticle surface can result in a number of problems during the end use of the nanoparticles, necessitating further ligand stripping or ligand exchange procedures. We have developed a way to synthesize cadmium sulfide (CdS) nanoparticles using a unique sulfur copolymer. This sulfur copolymer is primarily composed of elemental sulfur, which is a cheap and abundant material. The sulfur copolymer has the advantages of operating both as a high temperature solvent and as a sulfur source, which can react with a cadmium precursor during nanoparticle synthesis, resulting in the generation of ligand free CdS. During the reaction, only some of the copolymer is consumed to produce CdS, while the rest remains in the polymeric state, thereby producing a nanocomposite material. Once the reaction is finished, the copolymer stabilizes the nanoparticles within a solid polymeric matrix. The copolymer can then be removed before the nanoparticles are used, which produces nanoparticles that do not have organic coordinating ligands. This nascent synthesis technique presents a method to produce metal-sulfide nanoparticles for a wide variety of applications where the presence of organic ligands is not desired.

Introduction

虽然证明对合成是有用的,常规的脂族配位体存在许多用于纳米颗粒的光子和电化学装置的实施挑战。脂肪族配体高度绝缘,疏水性,并构成显著障碍电化学表面反应。1因此,一些研究已经开发了配体交换和配体剥离与功能部分或剥去配体取代这些脂肪族配体的协议,露出了光秃秃的纳米粒子表面1 3这些反应,但是,提出几个问题的内在。它们显著添加到合成过程的复杂性,不总是进行完全,并能恶化的纳米颗粒,使用这些技术时,器件制造过程中,可反过来强加显著问题的表面上。4

我们已经开发了硫共聚物,其可以用作硫化镉纳米粒子的合成过程中既高温溶剂和硫源。5该共聚物是基于由。Chung等人 ,使用元素硫和1,3-二异丙烯基苯(DIB)开发的网络共聚物。6在我们的情况下,甲基单体实现的,而不是DIB。的甲基单体限制交联反应,否则将产生一个高的分子量网络共聚物。5,6-只有一个乙烯基官能团的对甲基苯乙烯单体的存在促进形成低聚自由基一旦加热,这使得硫共聚物具体操作为并联纳米颗粒合成过程中的液体溶剂和硫源5,硫聚合物通过元素硫加热至150℃,这将导致在S 8环转变到线性结构液体硫双基形式产生。接下来,甲基注入我 n要在甲基分子与硫原子1:50摩尔比液体硫。5所述的甲基双键与硫链反应产生的共聚物,如在图1。5硫共聚物,然后冷却和镉前体加入。然后将该混合物再加热到200℃,在此期间,硫共聚物熔化,并在纳米颗粒成核和生长过程发起的溶液内5 A 20:是用来硫镉前体的摩尔比为1:1,所以,只有某些硫在反应过程中消耗掉。5该共聚物由一旦反应已终止的固体聚合物基质中悬浮它们稳定纳米颗粒。5的共聚物可以在合成之后被去除,导致生产不具有的CdS纳米粒子的有机配位配体,如在图2 5所示

内容】“>在这项工作中提出的合成方法是比较简单的,在文献中提出的其它方法的比较。1 3,7在传统连接的纳米颗粒已被证明存在问题,或不希望的,适用于不同范围的应用这种技术可以打开大门更高吞吐量测试,其中一个批次纳米粒子可用于检查后续functionalizations的完整频谱,而不需要复杂且耗时的配位体剥离或交换过程。2,4,8,9这些未连接的纳米颗粒也提供机会通过消除碳源,以减少印刷纳米器件通常观察到的碳缺陷的数量。10 16本详细的协议旨在帮助他人实施这种新方法,并帮助推动各种会发现场的积极使用它具有特殊的意义。

Protocol

注意:镉的前体是剧毒,必须非常小心处理。佩戴合适的防护设备,采用适当的工程控制,并咨询有关材料安全数据表(MSDS)。此外,纳米颗粒的生成可能存在额外的危害。本文所描述的反应是用标准真空气体歧管进行的,以便在惰性气氛中进行的实验。所有的化学品均商购并且原样使用。这个协议是基于一个先前开发的合成方法,这是我们最近别处所述。5 1.硫共聚物合成…

Representative Results

在图3a的TEM图像显示了已硫共聚物内成核之前的硫共聚物已被完全除去小的CdS纳米粒子(3-4纳米)。在图3a中的图像通过取纳米颗粒溶液的等分试样后,立即将溶液达到200℃获得的。 图3b示出已在溶液中生长30分钟的硫共聚物已经完全以前大纳米颗粒(7-10纳米)除去。 图3c示出图3b中的突出显示区域的更高放大率的图像。在图3c</…

Discussion

We have developed a method to synthesize CdS nanoparticles within a sulfur copolymer matrix. This sulfur copolymer is composed of elemental sulfur and methylstyrene.5 An important feature of this method is that the copolymer can be used as both a high-temperature solvent and a sulfur source that reacts with a cadmium precursor to produce CdS nanoparticles in solution.5 The critical step in the procedure is the synthesis of the sulfur copolymer with a suitable ratio of methylstyrene and sulfur. The u…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors would like to acknowledge the State of Washington for supporting this research through the University of Washington Clean Energy Institute Exploratory Fellowship Program, and National Science Foundation (NSF) Sustainable Energy Pathway (SEP) Award CHE-1230615.

Materials

Sulfur (S8), 99.5% Sigma Aldrich 84683
α-methylstyrene, 99% Sigma Aldrich M80903
Cadmium acetylacetonate (Cd(acac)), 99.9% Sigma Aldrich 517585 Highly Toxic
Chloroform (CHCl3), 99.5% Sigma Aldrich C2432
Hotplate / magnetic stirrer IKA RCT  3810001
Temperature controller with probe and heating mantle Oakton Temp 9000 WD-89800
Centrifuge Beckman Coulter Allegra X-22 392186
Centrifuge Tubes Thermo Scientific 3114 Teflon for resistance to chlorinated solvents
TEM with attached EDS detector FEI Tecnai G2 F-20 with EDAX detector
TEM Sample Grid Ted Pella 1824 Ultrathin carbon film substrate with holey carbon support films on a 400 mesh copper grid
XRD Bruker F-8 Focus Diffractometer
Molybdenum coated soda lime glass substrates 750 nm thick sputtered molybdenum layer
Quartz Fluorescence Cuvettes Sigma Aldrich Z803073 10 mm by 10 mm, 4 polished sides with screw top
UV-Vis-NIR Perkin Elmer Lambda 1050 Spectrometer With 3D WB Detector Module
PL Horiba FL3-21tau Fluorescence Spectrophotometer

References

  1. Rosen, E. L., Buonsanti, R., Llordes, A., Sawvel, A. M., Milliron, D. J., Helms, B. A. Exceptionally Mild Reactive Stripping of Native Ligands from Nanocrystal Surfaces by Using Meerwein’s Salt. Angew. Chemie Int. Ed. 51 (3), 684-689 (2012).
  2. Anderson, N. C., Hendricks, M. P., Choi, J. J., Owen, J. S. Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: spectroscopic observation of facile metal-carboxylate displacement and binding. J. Am. Chem. Soc. 135 (49), 18536-18548 (2013).
  3. Owen, J. S., Park, J., Trudeau, P. E., Alivisatos, A. P. Reaction chemistry and ligand exchange at cadmium-selenide nanocrystal surfaces. J. Am. Chem. Soc. 130 (37), 12279-12281 (2008).
  4. Lokteva, I., Radychev, N., Witt, F., Borchert, H., Parisi, J., Kolny-Olesiak, J. Surface Treatment of CdSe Nanoparticles for Application in Hybrid Solar Cells: The Effect of Multiple Ligand Exchange with Pyridine. J. Phys. Chem. C. 114 (29), 12784-12791 (2010).
  5. Martin, T. R., Mazzio, K. A., Hillhouse, H. W., Luscombe, C. K. Sulfur copolymer for the direct synthesis of ligand-free CdS nanoparticles. Chem. Commun. 51 (56), 11244-11247 (2015).
  6. Chung, W. J., et al. The use of elemental sulfur as an alternative feedstock for polymeric materials. Nat. Chem. 5 (6), 518-524 (2013).
  7. Nag, A., Kovalenko, M. V., Lee, J. -. S., Liu, W., Spokoyny, B., Talapin, D. V. Metal-free Inorganic Ligands for Colloidal Nanocrystals S2-, HS-, Se2-, HSe-, Te2-, HTe-, TeS32-, OH-, and NH2- as Surface. J. Am. Chem. Soc. 133 (27), 10612-10620 (2011).
  8. Dong, A., et al. A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals. J. Am. Chem. Soc. 133 (4), 998-1006 (2011).
  9. Cossairt, B. M., Juhas, P., Billinge, S., Owen, J. S. Tuning the Surface Structure and Optical Properties of CdSe Clusters Using Coordination Chemistry. J. Phys. Chem. Lett. 2 (4), 3075-3080 (2011).
  10. Lee, E., Park, S. J., Cho, J. W., Gwak, J., Oh, M. -. K., Min, B. K. Nearly carbon-free printable CIGS thin films for solar cell applications. Sol. Energy Mater. Sol. Cells. 95 (10), 2928-2932 (2011).
  11. Bucherl, C. N., Oleson, K. R., Hillhouse, H. W. Thin film solar cells from sintered nanocrystals. Curr. Opin. Chem. Eng. 2 (2), 168-177 (2013).
  12. Cai, Y., et al. Nanoparticle-induced grain growth of carbon-free solution-processed CuIn(S,Se)2 solar cell with 6% efficiency. ACS Appl. Mater. Inter. 5 (5), 1533-1537 (2013).
  13. Zhou, H., et al. CZTS nanocrystals: a promising approach for next generation thin film photovoltaics. Energy Environ. Sci. 6 (10), 2822-2838 (2013).
  14. Polizzotti, A., Repins, I. L., Noufi, R., Wei, S. -. H., Mitzi, D. B. The state and future prospects of kesterite photovoltaics. Energy Environ. Sci. 6 (11), 3171-3182 (2013).
  15. Suehiro, S., et al. Solution-Processed Cu2ZnSnS4 Nanocrystal Solar Cells: Efficient Stripping of Surface Insulating Layers using Alkylating Agents. J. Phys. Chem. C. 118 (2), 804-810 (2013).
  16. Graeser, B. K., et al. Synthesis of (CuInS2)0.5(ZnS)0.5 Alloy Nanocrystals and Their Use for the Fabrication of Solar Cells via Selenization. Chem. Mater. 26 (14), 4060-4063 (2014).
  17. Yin, Y., Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature. 437 (7059), 664-670 (2005).
  18. Alivisatos, A. P. Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science. 271 (5251), 933-937 (1996).
  19. Alivisatos, A. P. Perspectives on the Physical Chemistry of Semiconductor Nanocrystals. J. Phys. Chem. 100 (95), 13226-13239 (1996).
  20. Xiao, Q., Xiao, C. Surface-defect-states photoluminescence in CdS nanocrystals prepared by one-step aqueous synthesis method. Appl. Surf. Sci. 255 (16), 7111-7114 (2009).
  21. Zhang, J. Z. Interfacial Charge Carrier Dynamics of Colloidal Semiconductor Nanoparticles. J. Phys. Chem. B. 104 (31), 7239-7253 (2000).
  22. Joswig, J. -. O., Springborg, M., Seifert, G. Structural and Electronic Properties of Cadmium Sulfide Clusters. J. Phys. Chem. B. 104 (12), 2617-2622 (2000).
  23. Unni, C., Philip, D., Gopchandran, K. G. Studies on optical absorption and photoluminescence of thioglycerol-stabilized CdS quantum dots. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 71 (4), 1402-1407 (2008).
check_url/54047?article_type=t

Play Video

Cite This Article
Martin, T. R., Mazzio, K. A., Hillhouse, H. W., Luscombe, C. K. Synthesis of Ligand-free CdS Nanoparticles within a Sulfur Copolymer Matrix. J. Vis. Exp. (111), e54047, doi:10.3791/54047 (2016).

View Video