Summary

科大-1作为香兰素的合成的非均相催化剂

Published: July 23, 2016
doi:

Summary

The conversion of trans-ferulic acid to vanillin was achieved by heterogeneous catalysis. HKUST-1 was employed in this synthesis and the essential step in the catalytic process was the generation of unsaturated metal sites. Thus, when the catalyst was activated under vacuum, full vanillin conversion (yield of 95%) was obtained.

Abstract

香草醛(4- hydoxy -3-甲氧基苯甲醛)是香草豆的提取物的主要成分。天然香草香味的除了香兰素大约200个不同的加臭剂的化合物的混合物。香兰素的天然提取(从兰花香荚兰,香草tahitiensis香草绒球 )表示只有1%的全世界生产的,并且自该过程是昂贵的和非常长,生产香兰素的其余部分被合成。许多生物技术方法可用于从木质素,酚醛芪,异丁子香酚,丁香酚,guaicol 香兰素的合成,与因为这些方法使用强氧化剂和有毒溶剂损害环境的缺点。因此,在生产香兰素的环保型替代品是非常可取的,因此,根据目前的调查。多孔配位聚合物(的PCP)是一类新的高结晶材料RECently已用于催化。科大-1(铜3(BTC)2(H 2 O)3,BTC = 1,3,5-苯三甲酸)是一个非常著名的PCP已被广泛研究作为均相催化剂。这里,我们通过 -ferulic酸的使用科大-1作为催化剂的氧化报告用于生产香兰素的合成策略。

Introduction

作为非均相催化剂1-4采用多孔配位聚合物(主治医师)是一个相对较新的研究领域。由于非常有趣的特性是主治医师显示, 例如,多孔的规律性,高表面积和金属连接,它们可以为均相催化剂5-6新的替代品。催化活性的初级保健医生的一代一直是许多研究小组7-10的主要焦点。多孔配位聚合物是由金属离子和有机连接子,从而构成,这些材料的催化活性通过任何这些部件的设置。一些的PCP含有不饱和的(活性)的金属可以催化的化学反应11。然而,配位聚合物中的不饱和的金属部位(开金属位点)的产生不是一个简单的任务,它表示可以在概括的合成的挑战:(ⅰ)通过除去不稳定配体7-11的空配的产生;(ⅱ)通过将有机金属配位体(预先合成)8,12-13产生双金属的PCP的; (iii)所述的金属离子的的PCP的孔内9,14-15或有机配体10,16-17的后合成的变化。因为该方法(i)是如此简单,这是最常用的。通常情况下,开金属位点的产生已被用于增强的PCP的亲和力对H 2 18-19以及用于设计活性多相催化剂20-27。为了达到良好的催化剂性能,主治医师需要显示,另外在打开金属位点,结晶度的保留催化实验后,相对高的热稳定性和化学稳定性,反应条件的可访问性。

科大-1(铜3(BTC)2(H 2 O)3,BTC = 1,3,5-苯三甲酸)7是与铜(II)的阳离子构成的良好的调查多孔配位聚合物,被配位到羧酸酯配体和水。有趣的是,这些水分子可以消除(通过加热),这提供了在其周围呈现硬路易斯酸性质11的铜离子的正方平面配位。博尔迪加和 同事28表明,这些H 2水分子的消除没有影响结晶度(规律性的保留)和金属离子的氧化态(铜(II))并没有受到影响。作为催化剂的使用科大-1已经广泛研究29-33和特别是(对于目前的工作非常相关)与芳族分子34的过氧化氢 ​​的氧化。

香草是在化妆品,药​​品和食品工业中最广泛使用的调味剂中的一个。它是从兰花香荚兰,瓦尼的固化豆提取LLA tahitiensis和香草绒球 。玛雅和阿兹特克文明(前哥伦布时代的人)首先实现了香草的巨大潜力作为调味剂,因为它提高了巧克力味35-37。香草最早是在1858年38分离,但直到1874年39香草醛的化学结构最终确定。香兰素的天然提取(从兰花香荚兰,香草tahitiensis香草绒球 )表示只有1%的全世界生产的,并且自该过程是昂贵的和非常长的40,香兰素的其余部分被合成40。许多生物技术方法可用于从木质素,酚醛芪,异丁子香酚,丁香酚,guaicol 香兰素的合成然而,这些方法有,因为这些方法使用强氧化剂和有毒溶剂41-43危害环境的缺点。在此,我们r由反式 -ferulic酸的使用科大-1作为催化剂的氧化EPORT用于生产香兰素的合成策略。

Protocol

注意:在此催化过程中使用的化学品的毒性和非致癌相对较低。执行此实验过程中,如防护眼镜,手套,实验室外套,全长裤子和封闭趾鞋时,请使用所有适当的防范措施。以下过程的一部分涉及到标准的无空气的处理技术。 1.催化剂的活化(科大-1) 催化剂的表征结晶度注意:科大-1是一种可商购的多孔配位聚合物(催化剂)。为了证实了催化剂的结晶度,科大-1的样品需要通…

Representative Results

科大-1的三个具有代表性的样品,用红外光谱进行分析:非活化,在100℃活化1小时的烘箱(暴露于空气中),并在100℃真空(10 -2巴)下活化1小时。因此,傅立叶变换采用具有单个反射金刚石ATR附件( 图1)的分光计红外(FTIR)谱记录。对于所有的光谱,64扫描中的4000到400 -1范围分别记录以4cm -1的光谱分辨率。 <p class="jove_content" fo:…

Discussion

反式 -ferulic酸香草醛的催化转化的基本步骤是将催化剂(科大-1)的激活。如果催化剂未在原位活化(在真空下,并在100℃下),只有 -ferulic酸香草醛部分转化观察44。换言之,可访问开金属位点为催化循环44是至关重要的,并且这可以通过协调水消除到多孔配位聚合物中的铜(II)金属位点来实现。

因此,为了研究这个现象3红外线进?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors thank Dr. A. Tejeda-Cruz (X-ray; IIM-UNAM). R.Y. thanks CINVESTAV, Mexico for technical support. M.S.S acknowledges the financial support by Spanish Government, MINECO (MAT2012-31127). I.A.I thanks CONACyT (212318) and PAPIIT UNAM (IN100415), Mexico for financial support. E.G-Z. thanks CONACyT (156801 and 236879), Mexico for financial support. Thanks to U. Winnberg (ITAM and ITESM) for scientific discussions.

Materials

HKUST-1 Sigma-Aldrich MFCD10567003
Ferulic Acid (trans-4-Hydroxy-3-methoxycinnamic acid) Sigma-Aldrich 537-98-4
Ethanol Sigma-Aldrich 64-17-5
Hydrogen peroxide solution Sigma-Aldrich  7722-84-1
Acetonitrile Sigma-Aldrich 75-05-8
Ethyl acetate Sigma-Aldrich 141-78-6
Ammonium chloride Sigma-Aldrich 12125-02-9
Sodium sulfate anhydrous Sigma-Aldrich 7757-82-6
Ethyl acetate Sigma-Aldrich 141-78-6
n-Hexane Sigma-Aldrich 110-54-3
Silica Gel Sigma-Aldrich 112926-00-8  Size 70/230
250 mL two-neck round-bottom flask Sigma-Aldrich Z516872-1EA 250 mL capacity
Magnetic stirring bar Bel-Art products 371100002 Teflon, octagon
Condenser Cole-Parmer JZ-34706-00 200 mm Jacket length
Vacuum pump (Approx. 10X-2 bar) Cole-Parmer JZ-78162-00 Vacuum/Pressure Diaphragm Pump
Stopcock Cole-Parmer EW-30600-00 with a male luer slip
Hose Cole-Parmer JZ-06602-04 16.0 mm ID and 23.2 mm ED
Rubber septums Cole-Parmer JZ-08918-34 Silicone with PTFE coating
Hot plate Cole-Parmer JZ-04660-15 10.2 cm x 10.2 cm, 5 to 540 °C
Sand bath  Cole-Parmer GH-01184-00 Fluidized Sand Bath SBS-4, 50 to 600 °C
N2 gas INFRA Cod. 103 Cylinder 9m ³
Ballons (filled with N2 gas) Sigma-Aldrich Z154989-100EA Thick-wall, natural latex rubber
Syringes with removable needles Sigma-Aldrich Z116912-100EA 10 mL capacity
Filter paper Cole-Parmer JZ-81050-24 Grade No. 235 qualitative filter paper (90 mm diameter disc)
Buchner funnel Cole-Parmer JZ-17815-04 320 mL capacity which accept standard paper filter sizes 
Buchner flask Cole-Parmer JZ-34557-02 250 mL capacity
Rotary Evaporator Cole-Parmer JZ-28710-02
Beakers Cole-Parmer JZ-34502-(02,04,05) Pyrex Brand 1000 Griffin; 20, 50 and 100 mL
Separation funnel  Cole-Parmer JZ-34505-44 Capacity for 125 mL with steam lenght of 60 mm
Glass column for chromatography Cole-Parmer JZ-34695-42 Column with fritted disk, 10.5 mm ID x 250 mm L
PXRD diffractometer Bruker AXS D8 Advance XRD
FTIR spectrophotometer Thermo scientific FT-IR (JZ-83008-02); ATR (JZ-83008-26) Nicolet iS5 FT-IR Spectrometer, with KBr Windows and iD5 Diamond ATR

References

  1. Corma, A., García, H., Llabrés i Xamena, F. X. Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chem. Rev. 110 (8), 4606-4655 (2010).
  2. Gascon, J., Corma, A., Kapteijn, F., Llabrés i Xamena, F. X. Metal Organic Framework Catalysis: Quo vadis?. ACS Catal. 4 (2), 361-378 (2014).
  3. Ranocchiari, M., van Bokhoven, J. A. Catalysis by metal-organic frameworks: fundamentals and opportunities. Phys. Chem. Chem. Phys. 13, 6388-6392 (2011).
  4. Dhakshinamoorthy, A., Alvaro, M., Garcia, H. Commercial metal-organic frameworks as heterogeneous catalysts. Chem. Commu. 48 (92), 11275-11288 (2012).
  5. Corma, A., García, H. Lewis Acids as Catalysts in Oxidation Reactions: From Homogeneous to Heterogeneous Systems. Chem. Rev. 102 (10), 3837-3892 (2002).
  6. Corma, A., García, H. Lewis Acids: From Conventional Homogeneous to Green Homogeneous and Heterogeneous Catalysis. Chem. Rev. 103 (11), 4307-4366 (2003).
  7. Chui, S. S. Y., Lo, S. M. F., Charmant, J. P. H., Orpen, A. G., Williams, I. D. A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n. Science. 283 (5405), 1148-1150 (1999).
  8. Farha, O. K., Shultz, A. M., Sarjeant, A. A., Nguyen, S. T., Hupp, J. T. Active-Site-Accessible, Porphyrinic Metal−Organic Framework Materials. J. Am. Chem. Soc. 133 (15), 5652-5655 (2011).
  9. Zhang, J. P., Horike, S., Kitagawa, S. A Flexible Porous Coordination Polymer Functionalized by Unsaturated Metal Clusters. Angew. Chem. Int. Ed. 46 (6), 889-892 (2007).
  10. Wang, Z., Cohen, S. M. Postsynthetic modification of metal-organic frameworks. Chem. Soc. Rev. 38 (5), 1315-1329 (2009).
  11. Llabresi Xamena, F. X., Luz, J., Cirujano, F. G., Llabres i Xamena, F. X., Gascon, J. Chapter 7, Strategies for Creating Active Sites in MOFs. Metal organic frameworks as heterogeneous catalysts. , (2013).
  12. Cho, S. H., Ma, B., Nguyen, S. T., Hupp, J. T., Albrecht-Schmitt, T. E. A metal-organic framework material that functions as an enantioselective catalyst for olefin epoxidation. Chem. Commun. (24), 2563-2565 (2006).
  13. Xie, M. H., Yang, X. L., Wu, C. D. A metalloporphyrin functionalized metal-organic framework for selective oxidization of styrene. Chem. Commun. 47 (19), 5521-5523 (2011).
  14. Zhang, X., Llabrés i Xamena, F. X., Corma, A. Gold(III) – metal organic framework bridges the gap between homogeneous and heterogeneous gold catalysts. J. Catal. 265 (2), 155-160 (2009).
  15. Bohnsack, A. M., Ibarra, I. A., Bakhmutov, V. I., Lynch, V. M., Humphrey, S. M. Rational Design of Porous Coordination Polymers Based on Bis(phosphine)MCl2 Complexes That Exhibit High-Temperature H2 Sorption and Chemical. J. Am. Chem. Soc. 135 (43), 16038-16041 (2013).
  16. Ingleson, M. J., Perez-Barrio, J., Guilbaud, J. B., Khimyak, Y. Z., Rosseinsky, M. J. Framework functionalisation triggers metal complex binding. Chem. Commun. (23), 2680-2682 (2008).
  17. Burrows, A. D., Frost, C. G., Mahon, M. F., Richardson, C. Post-Synthetic Modification of Tagged Metal-Organic Frameworks. Angew. Chem. Int. Ed. 47 (44), 8482-8486 (2008).
  18. Dincă, M., Long, J. R. Hydrogen Storage in Microporous Metal-Organic Frameworks with Exposed Metal Sites. Angew. Chem. Int. Ed. 47 (36), 6766-6779 (2008).
  19. Ibarra, I. A., et al. Structures and H2 Adsorption Properties of Porous Scandium Metal-Organic Frameworks. Chem. Eur. J. 16 (46), 13671-13679 (2010).
  20. Gustafsson, M., et al. A Family of Highly Stable Lanthanide Metal−Organic Frameworks: Structural Evolution and Catalytic Activity. Chem. Mater. 22 (11), 3316-3322 (2010).
  21. Mitchell, L., et al. Remarkable Lewis acid catalytic performance of the scandium trimesate metal organic framework MIL-100(Sc) for C-C and C=N bond-forming reactions. Catal. Sci. Technol. 3 (3), 606-617 (2013).
  22. Jeong, K. S., et al. Asymmetric catalytic reactions by NbO-type chiral metal-organic frameworks. Chem. Sci. 2 (5), 877-882 (2011).
  23. Henschel, A., Gedrich, K., Kraehnert, R., Kaskel, S. Catalytic properties of MIL-101. Chem. Commun. (35), 4192-4194 (2008).
  24. Dhakshinamoorthy, A., et al. Iron(III) metal-organic frameworks as solid Lewis acids for the isomerization of α-pinene oxide. Catal. Sci. Techol. 2 (2), 324-330 (2012).
  25. Kurfiřtová, L., Seo, Y. K., Hwang, Y. K., Chang, J. S., Čejka, J. High activity of iron containing metal-organic-framework in acylation of p-xylene with benzoyl chloride. Catal. Today. 179 (1), 85-90 (2012).
  26. Beier, M. J., et al. Aerobic Epoxidation of Olefins Catalyzed by the Cobalt-Based Metal-Organic Framework STA-12(Co). Chem. Eur. J. 18 (3), 887-898 (2012).
  27. Ruano, D., Díaz-García, M., Alfayate, A., Sánchez-Sánchez, M. Nanocrystalline M-MOF-74 as Heterogeneous Catalysts in the Oxidation of Cyclohexene: Correlation of the Activity and Redox. Chem. Cat. Chem. 7 (4), 674-681 (2015).
  28. Prestipino, C., et al. Local Structure of Framework Cu(II) in HKUST-1 Metallorganic Framework:Spectroscopic Characterization upon Activation and Interaction with Adsorbates. Chem. Mater. 18 (5), 1337-1346 (2006).
  29. Opanasenko, M., et al. Comparison of the catalytic activity of MOFs and zeolites in Knoevenagel condensation. Catal. Sci. Technol. 3 (2), 500-507 (2013).
  30. Pérez-Mayoral, E., et al. Synthesis of quinolines via Friedländer reaction catalyzed by CuBTC metal-organic-framework. Dalton Trans. 41 (14), 4036-4044 (2012).
  31. Schlichte, K., Kratzke, T., Kaskel, S. Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2. Micropor. Mesopor. Mater. 73 (1-2), 81-88 (2004).
  32. Addis, D., et al. Hydrosilylation of Ketones: From Metal-Organic Frameworks to Simple Base Catalysts. Chem. Asian J. 5 (11), 2341-2345 (2010).
  33. Wu, Y., et al. Kinetics of oxidation of hydroquinone to p-benzoquinone catalyzed by microporous metal-organic frameworks M3(BTC)2 [M = copper(II), cobalt(II), or nickel(II); BTC = benzene-1,3,5-tricarboxylate] using molecular oxygen. Transition Met. Chem. 34 (3), 263-268 (2009).
  34. Marx, S., Kleist, W., Baiker, A. Synthesis, structural properties, and catalytic behavior of Cu-BTC and mixed-linker Cu-BTC-PyDC in the oxidation of benzene derivatives. J. Catal. 281 (1), 76-87 (2011).
  35. May, P., Cotton, S. . Molecules That Amaze Us. , 193 (2015).
  36. Havkin-Frenkel, D., Belanger, F. C. . Handbook of Vanilla Science and Technology. , 3 (2011).
  37. Zhao, S., et al. Preparation of ferulic acid from corn bran: Its improved extraction and purification by membrane separation. Food Bioprocess Technol. 92 (3), 309-313 (2014).
  38. Gobley, T. W. Recherche sur le principe odorant de la vanilla. J. Pharm. Chem. 3, 401 (1858).
  39. Tiemann, F., Haarmann, W. Uber das coniferin und seine Umwandlung in das aromatisches princip der vanilla. Ber. Dtsch. Chem. Ges. 7 (1), 608-623 (1858).
  40. Dignum, M. J. W., Kerler, J., Verpoorte, R. Vanilla production: technological, chemical, and biosynthetic aspects. Food. Rev. Int. 17 (2), 199-219 (2001).
  41. Walton, N. J., Mayer, M. J., Narbad, A. Vanilin. Phytochemistry. 63 (5), 505-515 (2003).
  42. Serra, S., Fuganti, C., Brenna, E. Biocatalytic preparation of natural flavours and fragrances. Trends Biotechnol. 23 (4), 193-198 (2005).
  43. Longo, M. A., Sanromán, M. A. Production of Food Aroma Compounds: Microbial and Enzymatic Methodologies. Food Technol. Biotechnol. 44 (3), 335-353 (2006).
  44. Yepez, R., et al. Catalytic activity of HKUST-1 in the oxidation of trans-ferulic acid to vanillin. New. J. Chem. 39 (7), 5112-5115 (2015).
check_url/54054?article_type=t

Play Video

Cite This Article
Yépez, R., Illescas, J. F., Gijón, P., Sánchez-Sánchez, M., González-Zamora, E., Santillan, R., Álvarez, J. R., Ibarra, I. A., Aguilar-Pliego, J. HKUST-1 as a Heterogeneous Catalyst for the Synthesis of Vanillin. J. Vis. Exp. (113), e54054, doi:10.3791/54054 (2016).

View Video