Summary

L'étude de l'Organisation supramoléculaire de photosynthétiques Membranes dans les tissus foliaires Gel fracturés par Cryo-microscopie électronique à balayage

Published: June 23, 2016
doi:

Summary

Here we describe a procedure for studying freeze-fractured plant tissues. High-pressure frozen leaf samples are freeze-fractured and double-layer coated, yielding well preserved frozen-hydrated samples that are imaged using the cryo-scanning electron microscope at high magnifications with minimal beam damage.

Abstract

microscopie électronique Cryo-balayage (MEB) d'échantillons de gel fracturé permet l'étude des structures biologiques à des conditions proches indigènes. Ici, nous décrivons une technique pour l'étude de l'organisation supramoléculaire de photosynthétiques membranes (thylakoïdes) dans les échantillons de feuilles. Ceci est obtenu par congélation à haute pression des tissus foliaires, congelez-fracturation, revêtement double couche et enfin cryo-SEM imagerie. L'utilisation du procédé de revêtement à double couche permet l'acquisition d'un fort grossissement (> 100,000X) images avec des dommages de faisceau minimal pour les échantillons congelés hydraté ainsi que les effets de charge minimum. En utilisant les procédures décrites , nous avons étudié les modifications dans la distribution supramoléculaire de photosystème et de la lumière-récolte protéines d'antenne complexes qui ont lieu pendant la déshydratation de la plante de la résurrection Craterostigma pumilum, in situ.

Introduction

photosynthèse Oxygenic, originaire de cyanobactérie ancienne, a été hérité par les algues et les plantes terrestres par les événements qui ont conduit à endosymbiotic développement de l'organite chloroplaste. Dans tous les phototrophs oxygénés modernes, le transport photosynthétique d'électrons et la génération de la force proton-motrice et de pouvoir réducteur sont effectuées dans des vésicules de sac-comme aplaties appelées membranes 'thylacoïdes'. Ces membranes abritent les complexes protéiques qui réalisent les réactions légères-driven de la photosynthèse et de fournir un support pour la transduction de l'énergie. Les membranes thylacoïdes de plantes et ( un peu) les algues sont différenciées en deux domaines morphologiques distincts: régions membranaires étroitement apprimés appelées «grana» et les membranes unstacked qui interconnectent le grana, appelés 'stroma lamelles' 1. Diverses études de gel-fracture des plantes et des membranes thylacoïdes d'algues ont été menées, à partir du début des années 1970. Lorsque le gel fracturé, membranesdiviser le long de leur noyau hydrophobe 2, générant une face exoplasmique (EF) et une face protoplasmique (PF), selon le compartiment cellulaire où les frontières demi-membrane, comme initialement inventé par Branton et al. . en 1975 3 Plant and thylakoïdes algues ont quatre faces de rupture différentes: FE, EFU, PF et PFU, avec 's' et dénotant et régions membranaires 'u' 'empilées' 'dépilés', respectivement. Les complexes de protéines membranaires, qui ne sont pas fendus ou cassés, ont tendance à rester avec soit E ou P côté de la membrane. Les premières observations que les différentes faces de rupture des thylakoïdes contiennent des particules de différentes tailles et densités 4, ainsi que les nombreuses enquêtes qui ont suivi, ont conduit à l' identification et la corrélation entre les particules observées et les complexes de protéines membranaires qui effectuent les réactions légères 5-13 (avis voir aussi 14,15).

Freexpériences eze-fracture de membranes thylacoïdes sont généralement réalisées sur des préparations de chloroplastes ou membranes thylakoïdes isolés (mais voir 16,17), au risque de toute modification / organisation structurelle et ou supramoléculaire qui peuvent survenir au cours de la procédure d'isolement. À la suite de la rupture, les répliques sont préparées par évaporation du platine / carbone (Pt / C), puis par une épaisse couche de carbone (C), et enfin la digestion de la matière biologique 18. Des répliques sont visualisés par microscopie électronique à transmission (MET). La technique traditionnelle cryofracturation-réplique continue à servir comme un outil important pour l' étude de l'organisation supramoléculaire des membranes photosynthétiques et leur adaptation à différents, par exemple., Lumière, conditions 19-23.

Dans notre étude récente de la plante de la résurrection homoiochlorophyllous Craterostigma pumilum 24, nous avons cherché à étudier les changements dans l'organisation supramoléculaire omembranes f thylacoïdes, ainsi que dans l'organisation cellulaire globale, au cours de la déshydratation et la réhydratation. Le caractère unique des espèces de résurrection homoiochlorophyllous est qu'ils sont capables de survivre dans des conditions de dessication dans les tissus végétaux (feuilles), tout en conservant leur appareil photosynthétique. Une fois que l' eau est disponible, ces plantes récupérer et reprendre l' activité photosynthétique en quelques heures à quelques jours 25. Pour cette étude, la cryo-ME à balayage (MEB) d'imagerie d'échantillons de feuilles fracturée par congélation a été combiné avec le gel à haute pression pour l'échantillon cryo-immobilisation. Ces procédures fournissent un moyen de visualiser des échantillons biologiques congelés-hydratés à un état ​​proche de leur état ​​natif 26. Un avantage principal est que les échantillons sont examinés directement après cryofracture et le revêtement, sans étapes successives. Ceci est particulièrement pertinent à l'enquête sur les plantes à différentes teneurs en eau relative (RWC), que leur état d'hydratation est maintenue pendant la préparation. Commentde plus, un inconvénient important est que les échantillons congelés hydraté peuvent subir des dommages du faisceau lors de l'imagerie, en particulier lors d'une numérisation à fort grossissement, qui sont nécessaires pour une mesure précise de la taille des complexes photosynthétiques. Pour y remédier, une méthode appelée «revêtement double couche» (DLC) 27,28 combiné à des conditions d'imagerie spécifiques cryo-SEM ont été utilisés. Ceux – ci ont donné lieu à des échantillons qui sont beaucoup moins sensibles à faisceau et ont permis l'élucidation de précieuses informations sur la protéine photosynthétique organisation supramoléculaire et d' autres constituants cellulaires de la plante de la résurrection C. pumilum à fort grossissement in situ.

Protocol

1. Cryo-fixation de feuilles Tissues par haute pression de congélation Remarque: Cette section décrit comment effectuer la congélation à haute pression des tissus foliaires pour une expérience de fracture par congélation. Pour des raisons liées à des échantillons de plantes voir 29. Ceci peut être adapté à d'autres types de tissus ou des échantillons avec quelques modifications. En utilisant l'angle d'une lame de rasoir, gratter le fond de la ca…

Representative Results

La figure 1 montre des images cryo-MEB de plaquettes contenant congelé, fracturés Craterostigma pièces pumilum foliaires haute pression. Dans certains échantillons, de grandes régions de cellules brisées sont obtenues (figure 1A). Dans d' autres cas , la pièce de la feuille reste fortement liée au disque supérieur et est arraché avec elle (figure 1B). Cependant, même dans le second cas, une partie du tiss…

Discussion

La technique décrite dans ce document permet l'étude des membranes de gel fracturé dans le contexte des tissus végétaux congelés à haute pression bien conservés par microscopie électronique à balayage cryo. Le principal avantage de l'utilisation de ces procédures est que la préparation de l'échantillon est purement physique; aucune mesure impliquant des produits chimiques ou la déshydratation sont nécessaires. Ainsi, il permet d' étudier les structures biologiques à un état ​​quasi-…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Nous remercions Andres Kaech (Université de Zurich) pour ses conseils utiles sur la numérisation imagerie par microscopie électronique. Ce travail a été soutenu par le Fonds des États-Unis-Israël binationale de recherche agricole et le développement (subvention no. US-4334-10, ZR), la Science Foundation Israël (subvention no. 1034/12, ZR) et le Human Frontier Science Program (RGP0005 / 2013, ZR). Les études de microscopie électronique ont été réalisées à l'Irving et le Centre Moskowitz Cherna pour Nano et Bio-Nano Imaging à l'Institut Weizmann des Sciences.

Materials

ethanol abs Bio-Lab 052505
isopropanol Bio-Lab 162605
1-hexadecene Sigma-Aldrich H7009
0.1/0.2 platelets Engineering Office M. Wohlwend GmbH, Switzerland 241 Platelets are of 3-mm diameter and 0.5-mm-thick (Type A) with 0.1/0.2-mm-deep cavities (of diamater 2 mm). Similar platelets can be obtained from Leica Microsystems.
high-precision-grade tweezers Electron Microscopy Sciences 72706-01 Dumont (Switzerland) Durostar style #5 tweezers; Can be substituted with other high-precision tweezers.
high-pressure freezing machine Bal-Tec HPM 010 High-pressure freezing alternatives: 1. HPF Compact 02, Wohlwend GmbH; 2. HPM 010, RMC Boeckeler; 3. EM PACT2, Leica Microsystems; 4. EM HPM 100, Leica Microsystems; 5. EM ICE, Leica Microsystems.
freeze-fracture system Leica Microsystems EM BAF 060
cryo preparation loading stage Leica Microsystems 16770228
specimen holder for univeral freeze fracturing Leica Microsystems 16LZ04746VN Clamp holder for specimen carriers of diameter 3 mm
vacuum cryo-transfer shuttle Leica Microsystems EM VCT 100
scanning electron microscope Zeiss Ultra 055
cryo SEM stage Leica Microsystems 16770299905
image acquisiton software SmartSEM, Carl Zeiss Microscopy GmbH
image analysis software Fiji/Image J, National Institute of Health http://fiji.sc/Fiji

References

  1. Anderson, J. M. Insights into the consequences of grana stacking of thylakoid membranes in vascular plants: a personal perspective. Aust. J. Plant Physiol. 26 (7), 625-639 (1999).
  2. Branton, D. Fracture Faces of Frozen Membranes. Proc. Natl. Acad. Sci. U. S. A. 55 (5), 1048-1056 (1966).
  3. Branton, D., et al. Freeze-Etching Nomenclature. Science. 190 (4209), 54-56 (1975).
  4. Goodenough, U. W., Staehelin, L. A. Structural Differentiation of Stacked and Unstacked Chloroplast Membranes – Freeze-Etch Electron Microscopy of Wild-Type and Mutant Strains of Chlamydomonas. J. Cell Biol. 48 (3), 594-619 (1971).
  5. Simpson, D. J. Freeze-Fracture Studies on Barley Plastid Membranes .6. Location of the P700-Chlorophyll a-Protein-1. Eur. J. Cell Biol. 31 (2), 305-314 (1983).
  6. Staehelin, L. A. Reversible Particle Movements Associated with Unstacking and Restacking of Chloroplast Membranes. Invitro. J. Cell Biol. 71 (1), 136-158 (1976).
  7. Miller, K. R. A Chloroplast Membrane Lacking Photosystem-I – Changes in Unstacked Membrane Regions. Biochim. Biophys. Acta. 592 (1), 143-152 (1980).
  8. Miller, K. R., Cushman, R. A. Chloroplast Membrane Lacking Photosystem-II – Thylakoid Stacking in the Absence of the Photosystem-II Particle. Biochim. Biophys. Acta. 546 (3), 481-497 (1979).
  9. Miller, K. R., Staehelin, L. A. Analysis of Thylakoid Outer Surface – Coupling Factor Is Limited to Unstacked Membrane Regions. J. Cell Biol. 68 (1), 30-47 (1976).
  10. Simpson, D. J. Freeze-Fracture Studies on Barley Plastid Membranes .3. Location of the Light-Harvesting Chlorophyll-Protein. Carlsberg Res. Commun. 44 (5), 305-336 (1979).
  11. Olive, J., Recouvreur, M., Girardbascou, J., Wollman, F. A. Further Identification of the Exoplasmic Face Particles on the Freeze-Fractured Thylakoid Membranes – a Study Using Double and Triple Mutants from Chlamydomonas-Reinhardtii Lacking Various Photosystem-Ii Subunits and the Cytochrome B6/F Complex. Eur. J. Cell Biol. 59 (1), 176-186 (1992).
  12. Olive, J., Vallon, O., Wollman, F. A., Recouvreur, M., Bennoun, P. Studies on the Cytochrome B6/F Complex .2. Localization of the Complex in the Thylakoid Membranes from Spinach and Chlamydomonas-Reinhardtii by Immunocytochemistry and Freeze-Fracture Analysis of B6/F Mutants. Biochim. Biophys. Acta. 851 (2), 239-248 (1986).
  13. Armond, P. A., Staehelin, L. A., Arntzen, C. J. Spatial Relationship between Light Harvesting Complex and Photosystem-1 and Photosystem-2 in Stacked and Unstacked Chloroplast Membranes. J. Cell Biol. 70 (2), 400-418 (1976).
  14. Staehelin, L. A. Chloroplast structure: from chlorophyll granules to supra-molecular architecture of thylakoid membranes. Photosynth. Res. 76 (1-3), 185-196 (2003).
  15. Nevo, R., Charuvi, D., Tsabari, O., Reich, Z. Composition, architecture and dynamics of the photosynthetic apparatus in higher plants. Plant J. 70 (1), 157-176 (2012).
  16. Platt, K. A., Oliver, M. J., Thomson, W. W. Membranes and Organelles of Dehydrated Selaginella and Tortula Retain Their Normal Configuration and Structural Integrity – Freeze-Fracture Evidence. Protoplasma. 178 (1-2), 57-65 (1994).
  17. Platt-Aloia, K. A., Thomson, W. W. Advantages of the use of intact plant tissues in freeze-fracture electron microscopy. J. Electron Microsc. Tech. 13 (4), 288-299 (1989).
  18. Carson, J. L. Fundamental technical elements of freeze-fracture/freeze-etch in biological electron microscopy. J. Vis. Exp. (91), e51694 (2014).
  19. Kirchhoff, H., et al. Low-light-induced formation of semicrystalline photosystem II arrays in higher plant chloroplasts. Biochemistry. 46 (39), 11169-11176 (2007).
  20. Johnson, M. P., et al. Photoprotective Energy Dissipation Involves the Reorganization of Photosystem II Light-Harvesting Complexes in the Grana Membranes of Spinach Chloroplasts. Plant Cell. 23 (4), 1468-1479 (2011).
  21. Kirchhoff, H., Tremmel, I., Haase, W., Kubitscheck, U. Supramolecular photosystem II organization in grana thylakoid membranes: evidence for a structured arrangement. Biochemistry. 43 (28), 9204-9213 (2004).
  22. Belgio, E., Ungerer, P., Ruban, A. V Light-harvesting superstructures of green plant chloroplasts lacking photosystems. Plant Cell Environ. , (2015).
  23. Goral, T. K., et al. Light-harvesting antenna composition controls the macrostructure and dynamics of thylakoid membranes in Arabidopsis. Plant J. 69 (2), 289-301 (2012).
  24. Charuvi, D., et al. Photoprotection Conferred by Changes in Photosynthetic Protein Levels and Organization during Dehydration of a Homoiochlorophyllous Resurrection Plant. Plant Physiol. 167 (4), 1554-1565 (2015).
  25. Farrant, J. M., Brandt, W., Lindsey, G. G. An Overview of Mechanisms of Desiccation Tolerance in Selected Angiosperm Resurrection Plants. Plant Stress. 1 (1), 72-84 (2007).
  26. Walther, P., Schatten, H., Pawley, J. B. High-resolution cryoscanning electron microscopy of biological samples. Biological Low-Voltage Scanning Electron Microscopy. , 245-261 (2008).
  27. Walther, P., Müller, M. Double-layer coating for field-emission cryo-scanning electron microscopy–present state and applications. Scanning. 19 (5), 343-348 (1997).
  28. Walther, P., Wehrli, E., Hermann, R., Müller, M. Double-layer coating for high-resolution low-temperature scanning electron microscopy. J. Microsc. 179, 229-237 (1995).
  29. Hess, M. W. Cryopreparation methodology for plant cell biology. Cell. Electron Microsc. 79, 57-100 (2007).
  30. Schertel, A., et al. Cryo FIB-SEM: Volume imaging of cellular ultrastructure in native frozen specimens. J. Struct. Biol. 184 (2), 355-360 (2013).
  31. Schindelin, J., et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 9 (7), 676-682 (2012).
  32. Walther, P. Recent progress in freeze-fracturing of high-pressure frozen samples. J. Microsc. 212 (1), 34-43 (2003).
  33. Nevo, R., et al. Architecture of Thylakoid Membrane Networks. Lipids Photosynth. 30, 295-328 (2009).
check_url/54066?article_type=t

Play Video

Cite This Article
Charuvi, D., Nevo, R., Kaplan-Ashiri, I., Shimoni, E., Reich, Z. Studying the Supramolecular Organization of Photosynthetic Membranes within Freeze-fractured Leaf Tissues by Cryo-scanning Electron Microscopy. J. Vis. Exp. (112), e54066, doi:10.3791/54066 (2016).

View Video