Summary

一个两亲性共聚物的阴离子聚合通过π-π堆积作用稳定嵌段共聚物胶束的制备

Published: October 10, 2016
doi:

Summary

生活在甲氧基聚乙二醇(MPEG-b -PPheGE)苯基缩水甘油醚(PheGE)的阴离子聚合的关键步骤进行说明。将所得嵌段共聚物胶束(带宽模型)的下生理学上得到有关条件装载阿霉素14%(重量%)和药物的持续释放超过4天。

Abstract

在这项研究中,包括与苯基成形芯嵌段的两亲共聚物由甲氧基聚乙二醇(MPEG-b -PPheGE)活苯基缩水甘油醚(PheGE)的阴离子聚合来合成。该共聚物的表征揭示了窄的分子量分布(PDI <1.03),并确认的mPEG 122的聚合度- B(PheGE)15。使用具有通过动态光散射和透射电子显微镜计算的聚集行为建立荧光法,共聚物的临界胶束浓度进行评价。该共聚物为在药物输送应用中使用的潜力,它初步包括体外生物相容性,装载和疏水性抗癌药物多柔比星(DOX)的释放进行评价。阿霉素的稳定胶束制剂与载药量高达14%(重量%),载药effici制备encies> 60%(W / W)4天以上生理学相关条件(酸性和中性pH值,白蛋白的存在)根据药物的和持续释放。高载药量水平和持续释放归因于稳定DOX和胶束的形成芯块之间的π-π相互作用。

Introduction

在含水介质中,两亲性嵌段共聚物组装形成纳米尺寸的嵌段共聚物胶束(带宽模型),该组成由亲水壳或电晕包围的疏水核。胶束核心可作为疏水性药物的结合的贮存器;同时,亲水电晕提供核心和外部介质之间的界面。聚(乙二醇)(PEG)和其衍生物是聚合物的最重要的一个类和最广泛使用的药物制剂之一。1-3带宽模型已经被证明是一个值得药物递送平台,靠这个几个配方现在在后期临床开发技术。4最常见的,该共聚物的疏水性嵌段包含聚己内酯,聚(D,L-丙交酯),聚(环氧丙烷)或聚(β-苄基-L-天门冬氨酸)的5 -9

片冈的研究小组调查了来自PEO-b形成球形胶束</em> -PBLA和聚(环氧乙烷) – B -用于递送阿霉素(DOX)10,11在他们的报告中(聚天冬氨酸共轭多柔比星),他们提出了在聚合物缀合的药物或PBLA之间的π-π相互作用和游离DOX用于稳定导致在药物装载和保留增加胶束芯。它建立了药物和成芯块之间的相容性或相互作用是关键性能相关的参数的决定因素。12除了DOX,一些癌症治疗包括其核心结构( 例如 ,甲氨蝶呤,olaparib,SN内芳环-38)。

其结果存在这样包括在其芯成形块苄环共聚物的合成显著兴趣。 PEG和其衍生物的阴离子开环聚合使以上分子量的控制,导致以良好的收率低多分散性的材料。13,14 Ethyle与苯基缩水甘油醚(PheGE)或氧化苯乙烯NE氧化物(SO)可以是(共)聚合以形成形成胶束为疏水性药物溶解嵌段共聚物。15-18目前的报告描述了活苯基的阴离子聚合的必要步骤缩水甘油基上的mPEG-OH醚单体作为大分子引发剂( 图1)。然后将所得嵌段共聚物和它的聚集体的特征在于相关于药物递送用的特性方面。

Protocol

图1.示意图,显示了MPEG-b -PPheGE共聚物的制备九个关键步骤。 请点击此处查看该图的放大版本。 1.受干燥天气影响的试剂准备 试剂的制备。 在烘箱中在50℃下称重15克的mPEG-5K(M N =5400克/摩尔,PDI 1….

Representative Results

图3. 苯基缩水甘油醚的基于MPEG大分子引发剂阴离子聚合的插图制作MPEG- 期 B – (PheGE)15 制备嵌段共聚物胶束的阿霉素的装载示意图使用萘钾说明了羟基的mPEG的去质子化。作为自由基阴离子,其次是苯基缩水甘油醚(PheGE)单体?…

Discussion

由于良好的控制了阴离子聚合提供了对分子量它是业界最实用的流程的基础上环氧乙烷单体(PEG和PPG)聚合物的制备方法之一。必须使用最佳和严格的条件为,以实现成功的聚合。所有试剂和适当的装置的严格纯化是用于合成的活性质至关重要。当前设置的限制大多与依赖于插管传输技术相关。使用适当的压力,插管是为学术设置一个安全的实验室规模的技术。施加这些预防措施将提供更好的在?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

CA acknowledges a Discovery grant from the Natural Sciences and Engineering Research Council of Canada. CA acknowledges a Chair in Pharmaceutics and Drug Delivery from GSK. The authors declare no competing financial interest.

Materials

DMEM/HAMF12 Gibco, Life Technologies 12500 Supplemented with 10%FBS. Warm in 37 °C water bath
                          
Trypsin-EDTA(0.25%) Sigma-Aldrich T4049 Warm in 37 °C water bath 
Fetal bovine serum (FBS) Sigma-Aldrich F1051 Canada origin
MDA-MB-468 cell line ATCC HTB-132
MTS tetrazolium reagent PROMEGA G111B
Phenazine ethosulfate (PES) Sigma-Aldrich P4544 >95%
mPEG5K (Mn 5400 g/mol) Sigma-Aldrich 81323 PDI=1.02
Dimethylsolfoxide (DMSO) Sigma-Aldrich D4540 >99.5%
Naphthalene Sigma-Aldrich 147141 >99%
Phenyl glycidyl ether Sigma-Aldrich A32608 >85%
Benzophenone Sigma-Aldrich 427551 >99%
Potassium Sigma-Aldrich 451096 >98%
Tetrahydrofuran Caledon Laboratory Chemicals 8900 1 ACS
Hexane Caledon Laboratory Chemicals 5500 1 ACS
Calcium hydride (CaH2) ACP C-0460 >99.5%
Diethyl Ether Caledon Laboratory Chemicals 1/10/4800 ACS
Microplate reader BioTek Instruments
Differential scanning calorimetry (DSC) TA Instruments Inc DSC Q100
Gel permeation chromatography (GPC) Waters 2695 separation moldule / 2414 detector  2 Columns: Agilent Plgel 5µm Mixed-D
NMR spectroscopy Varian Mercury 400MHz
Chloroform-d Sigma-Aldrich 151858 99.96%
DMSO-d Sigma-Aldrich 156914 99.96%
Vaccum pump  Gardner Denver Welch Vacuum Tech, Inc. Ultimate  pressure 1.10-4 torr
Drierit with indicator, 8 mesh Sigma-Aldrich 238988 Regenerated at 230°C for 2 hrs

References

  1. Dickerson, T. J., Reed, N. N., Janda, K. D. Soluble Polymers as Scaffolds for Recoverable Catalysts and Reagents. Chemical Reviews. 102, 3325-3344 (2002).
  2. van Heerbeek, R., Kamer, P. C. J., van Leeuwen, P. W. N. M., Reek, J. N. H. Dendrimers as Support for Recoverable Catalysts and Reagents. Chemical Reviews. 102 (10), 3717-3756 (2002).
  3. Knop, K., Hoogenboom, R., Fischer, D., Schubert, U. S. Poly(ethylene glycol) in Drug Delivery: Pros and Cons as Well as Potential Alternatives. Angewandte Chemie International Edition. 49 (36), 6288-6308 (2010).
  4. Eetezadi, S., Ekdawi, S. N., Allen, C. The challenges facing block copolymer micelles for cancer therapy: In vivo barriers and clinical translation. Advanced Drug Delivery Reviews. 91, 7-22 (2015).
  5. Attwood, D., Booth, C., Yeates, S. G., Chaibundit, C., Ricardo, N. Block copolymers for drug solubilisation: Relative hydrophobicities of polyether and polyester micelle-core-forming blocks. International Journal of Pharmaceutics. 345 (1-2), 35-41 (2007).
  6. Matsumura, Y., Kataoka, K. Preclinical and clinical studies of anticancer agent-incorporating polymer micelles. Cancer Science. 100 (4), 572-579 (2009).
  7. Chan, A. S., Chen, C. H., Huang, C. M., Hsieh, M. F. Regulation of particle morphology of pH-dependent poly(epsilon-caprolactone)-poly(gamma-glutamic acid) micellar nanoparticles to combat breast cancer cells. Journal of Nanoscience and Nanotechnology. 10 (10), 6283-6297 (2010).
  8. Diao, Y. Y., et al. Doxorubicin-loaded PEG-PCL copolymer micelles enhance cytotoxicity and intracellular accumulation of doxorubicin in adriamycin-resistant tumor cells. International Journal of Nanomedicine. 6, 1955-1962 (2011).
  9. Mikhail, A. S., Allen, C. Poly(ethylene glycol)-b-poly(ε-caprolactone) Micelles Containing Chemically Conjugated and Physically Entrapped Docetaxel: Synthesis, Characterization, and the Influence of the Drug on Micelle Morphology. Biomacromolecules. 11 (5), 1273-1280 (2010).
  10. Kataoka, K., Harada, A., Nagasaki, Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Advanced Drug Delivery Reviews. 47 (1), 113-131 (2001).
  11. Nakanishi, T., et al. Development of the polymer micelle carrier system for doxorubicin. Journal of Controlled Release. 74 (1-3), 295-302 (2001).
  12. Liu, J., Xiao, Y., Allen, C. Polymer-drug compatibility: A guide to the development of delivery systems for the anticancer agent, ellipticine. Journal of Pharmaceutical Sciences. 93 (1), 132-143 (2004).
  13. Flory, P. J. Molecular Size Distribution in Ethylene Oxide Polymers. Journal of the American Chemical Society. 62 (6), 1561-1565 (1940).
  14. Kazanskii, K. S., Solovyanov, A. A., Entelis, S. G. Polymerization of ethylene oxide by alkali metal-naphthalene complexes in tetrahydrofuran. European Polymer Journal. 7 (10), 1421-1433 (1971).
  15. Crothers, M., et al. Micellization and Gelation of Diblock Copolymers of Ethylene Oxide and Styrene Oxide in Aqueous Solution. Langmuir. 18 (22), 8685-8691 (2002).
  16. Taboada, P., et al. Block Copolymers of Ethylene Oxide and Phenyl Glycidyl Ether: Micellization, Gelation, and Drug Solubilization. Langmuir. 21 (12), 5263-5271 (2005).
  17. Taboada, P., et al. Micellization and Drug Solubilization in Aqueous Solutions of a Diblock Copolymer of Ethylene Oxide and Phenyl Glycidyl Ether. Langmuir. 22 (18), 7465-7470 (2006).
  18. Attwood, D., Booth, C. . Colloid Stability. , 61-78 (2010).
  19. Le Devedec, F., et al. Postalkylation of a Common mPEG-b-PAGE Precursor to Produce Tunable Morphologies of Spheres, Filomicelles, Disks, and Polymersomes. ACS Macro Letters. 5 (1), 128-133 (2016).
  20. Chtryt, V., Ulbrich, K. Conjugate of Doxorubicin with a Thermosensitive Polymer Drug Carrier. Journal of Bioactive and Compatible Polymers. 16 (6), 427-440 (2001).
  21. Kataoka, K., et al. Doxorubicin-loaded poly(ethylene glycol)-poly(β-benzyl-l-aspartate) copolymer micelles: their pharmaceutical characteristics and biological significance. Journal of Controlled Release. 64 (1-3), 143-153 (2000).
  22. Cammas, S., Matsumoto, T., Okano, T., Sakurai, Y., Kataoka, K. Design of functional polymeric micelles as site-specific drug vehicles based on poly (α-hydroxy ethylene oxide-co-β-benzyl l-aspartate) block copolymers. Materials Science and Engineering: C. 4 (4), 241-247 (1997).
  23. Lv, S., et al. Doxorubicin-loaded amphiphilic polypeptide-based nanoparticles as an efficient drug delivery system for cancer therapy. Acta Biomaterialia. 9 (12), 9330-9342 (2013).
  24. Kim, J. O., Oberoi, H. S., Desale, S., Kabanov, A. V., Bronich, T. K. Polypeptide nanogels with hydrophobic moieties in the cross-linked ionic cores: synthesis, characterization and implications for anticancer drug delivery. Journal of Drug Targeting. 21 (10), 981-993 (2013).
  25. Zhao, C. L., Winnik, M. A., Riess, G., Croucher, M. D. Fluorescence probe techniques used to study micelle formation in water-soluble block copolymers. Langmuir. 6 (2), 514-516 (1990).
  26. Wilhelm, M., et al. Poly(styrene-ethylene oxide) block copolymer micelle formation in water: a fluorescence probe study. Macromolecules. 24 (5), 1033-1040 (1991).
  27. Cammas, S., Kataoka, K. Functional poly[(ethylene oxide)-co-(β-benzyl-L-aspartate)] polymeric micelles: block copolymer synthesis and micelles formation. Macromolecular Chemistry and Physics. 196 (6), 1899-1905 (1995).
  28. Kwon, G., et al. Micelles based on AB block copolymers of poly(ethylene oxide) and poly(.beta.-benzyl L-aspartate). Langmuir. 9 (4), 945-949 (1993).
  29. Ahmed, F., Discher, D. E. Self-porating polymersomes of PEG-PLA and PEG-PCL: hydrolysis-triggered controlled release vesicles. Journal of Controlled Release. 96 (1), 37-53 (2004).
  30. Uhrig, D., Mays, J. W. Experimental techniques in high-vacuum anionic polymerization. Journal of Polymer Science Part A: Polymer Chemistry. 43 (24), 6179-6222 (2005).
  31. Parker, A. J. The effects of solvation on the properties of anions in dipolar aprotic solvents. Quarterly Reviews, Chemical Society. 16 (2), 163-187 (1962).
  32. Cram, D. J. . Fundamentals o] Carbanion Chemistry. , (1965).
  33. Szwarc, M. . ACS Symposium Series. 166, 1-15 (1981).
  34. Cho, Y. W., Lee, J., Lee, S. C., Huh, K. M., Park, K. Hydrotropic agents for study of in vitro paclitaxel release from polymeric micelles. Journal of Controlled Release. 97, 249-257 (2004).
  35. Dewhurst, P. F., Lovell, M. R., Jones, J. L., Richards, R. W., Webster, J. R. P. Organization of Dispersions of a Linear Diblock Copolymer of Polystyrene and Poly(ethylene oxide) at the Air−Water Interface. Macromolecules. 31 (22), 7851-7864 (1998).
  36. Opanasopit, P., et al. Block Copolymer Design for Camptothecin Incorporation into Polymeric Micelles for Passive Tumor Targeting. Pharmaceutical Research. 21 (11), 2001-2008 (2004).
  37. Allen, G., Booth, C., Price, C. VI-The physical properties of poly(epoxides). Polymer. 8, 414-418 (1967).
  38. Jada, A., Hurtrez, G., Siffert, B., Riess, G. Structure of polystyrene-block-poly(ethylene oxide) diblock copolymer micelles in water. Macromolecular Chemistry and Physics. 197 (11), 3697-3710 (1996).
  39. Attwood, D., Florence, A. T. . Surfactant systems : their chemistry, pharmacy, and biology. , (1983).
  40. Rekatas, C. J., et al. The effect of hydrophobe chemical structure and chain length on the solubilization of griseofulvin in aqueous micellar solutions of block copoly(oxyalkylene)s. Physical Chemistry Chemical Physics. 3 (21), 4769-4773 (2001).
check_url/54422?article_type=t

Play Video

Cite This Article
Le Dévédec, F., Houdaihed, L., Allen, C. Anionic Polymerization of an Amphiphilic Copolymer for Preparation of Block Copolymer Micelles Stabilized by π-π Stacking Interactions. J. Vis. Exp. (116), e54422, doi:10.3791/54422 (2016).

View Video