Summary

激光辅助畜禽受精卵细胞质显微注射

Published: October 05, 2016
doi:

Summary

This protocol shows how to perform cytoplasmic microinjection in farm animal zygotes. This technique can be used to deliver any solution into the one-cell embryo such as genome editing tools to generate knockout animals.

Abstract

Cytoplasmic microinjection into one-cell embryos is a very powerful technique. As an example, it enables the delivery of genome editing tools that can create genetic modifications that will be present in every cell of an adult organism. It can also be used to deliver siRNA, mRNAs or blocking antibodies to study gene function in preimplantation embryos. The conventional technique for microinjecting embryos used in rodents consists of a very thin micropipette that directly penetrates the plasma membrane when advanced into the embryo. When this technique is applied to livestock animals it usually results in low efficiency. This is mainly because in contrast to mice and rats, bovine, ovine, and porcine zygotes have a very dark cytoplasm and a highly elastic plasma membrane that makes visualization during injection and penetration of the plasma membrane hard to achieve. In this protocol, we describe a suitable microinjection method for the delivery of solutions into the cytoplasm of cattle zygotes that has proved to be successful for sheep and pig embryos as well. First, a laser is used to create a hole in the zona pellucida. Then a blunt-end glass micropipette is introduced through the hole and advanced until the tip of the needle reaches about 3/4 into the embryo. Then, the plasma membrane is broken by aspiration of cytoplasmic content inside the needle. Finally, the aspirated cytoplasmic content followed by the solution of interest is injected back into the embryonic cytoplasm. This protocol has been successfully used for the delivery of different solutions into bovine and ovine zygotes with 100% efficiency, minimal lysis, and normal blastocysts development rates.

Introduction

1 – 细胞胚胎显微注射细胞质是一个非常强大的技术。它可用于递送任何溶液进入胚胎,例如,产生基因敲除研究基因功能或产生基因编辑动物。农业最相关的农场动物受精卵具有非常高的脂肪酸组合物,使得它们的细胞质不透明和暗1。他们也有相当的弹性质膜(PM)。这些特点使显微注射用常规的原核/胞浆注射在啮齿类动物具有挑战性,往往不准确使用。

细胞质微注射有超过原核显微注射法的优点,因为它是更容易执行并且也导致了注射的胚胎损伤小,导致更高的2生存能力。此协议的总体目标是演示提供解决方案到农场动物受精卵的细胞质一种成功的方法。到能够执行对家畜胚胎效率高细胞质微注射,激光被用来产生在透明带(ZP),然后一个钝端部玻璃针用于显微注射的孔。这一战略旨在减少注射时印在胚胎的机械损伤。然后,注射针内胞质内容抽吸允许PM的效率和自信破损确保溶液被输送到胚胎的细胞质中。

这种技术已在牛胚胎被成功地用于siRNA递送到合子的细胞质3,4和生成使用群集定期相互间隔短回文重复序列(CRISPR)/ CRISPR相关联的系统9(Cas9)系统5的突变。它也适合(稍加修改)注入牛卵丘封闭的卵母细胞6。这里,我们描述我们的注射方案提供的染料,这可以是适用于注射任何宫IRED溶液注入受精卵,并表明,使用这种技术使得最小裂解并且不影响早期胚胎发育。

Protocol

1,微管生产注射微量放置一个硼硅玻璃毛细管(外径(OD):1.0毫米,内径(ID)0.75毫米)的一个微量拉马(在右侧和左侧毛细管持有者的中心)并锁定。 使用适当的程序来拉玻璃毛细管,因此导致了薄带尖长攻丝机。 (例如:热量:825;拉:30;速度:120;时间:200;压力:500)。 小心地从设备中取出拉移液器,将它放在一个microforge在水平位置。 带上拉吸管和其?…

Representative Results

激光辅助显微注射细胞质是一个强大而可靠的协议,以提供解决方案为牲畜受精卵的细胞质中。 图3显示了受精卵的大致轮廓之前和注射,以及该技术的整体轮廓之后。葡聚糖红被用作注射溶液,以允许注入和注入效率和准确度的跟踪点。溶液的成功递送在图4中示出表示最近注入胚胎,其中染料被均匀地分布在细胞质中。使用这种技术的胚胎的100…

Discussion

受精卵显微注射是引入解决方案集成到哺乳动物胚胎一套行之有效的方法。与一些依赖于物种和实验的目的变化,这种技术可以广泛地使用。我们展示了如何使用激光来帮助一个钝头微量的入口处进行显微注射胞浆内。某些牲畜物种(如牛,羊,和猪)的合子有黑暗的细胞质中,阻碍注射针的可视化一次胚胎内。此外,他们的血浆膜是非常有弹性的,使得与一个斜面尖刺针(通常用于注入啮齿动?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Work related to this technique is supported by NIH/NICHD RO1 HD070044 and USDA/NIFA Hatch projects W-3171 and W-2112.

Materials

Micropipette puller Sutter Instrument P-97
Glass capillary Sutter instruments B100-75-10 These capillaries are used for making the holding and injecting pipettes. Any thick/standard wall borosilicate tubing without filament can be used.
Microforge Narishige MF-9 Equipped with 10X magnification lense.
Micromanipulator Nikon/ Narishige NT88-V3
Inverted microscope Nikon TE2000-U Equipped with 4x, 20x lenses and with a laser system.
Laser Research Instruments 7-47-500 Saturn 5 Active laser.
Microdispenser Drummond 3-000-105 The microdispenser is used to move the embryos. A p10 pipette can also be used but loading as minimal volume as possible.
60mm culture dish Corning 430166 Use the lid of the dish to make the injection plate since they have lower walls and will make positioning and moving of the micropipettes with the micromanipulator easier. 
35mm culture dish Corning 430165 These dishes are used for culturing the embryos in 50μl drops covered with mineral oil. Alternatively, a 4 well dish can also be used. Regardless of the dish chosen to culture the embryos, they always have to be equilibrated in the incubator for at least 4 hours prior to transfering the embryos to them.
Incubator Sanyo MCO-19AIC Any incubator that can be set to 38.5°C 5% CO2 conditions can be used.
Stereomicroscope Nikon SMZ800 Used for visualizing the embryos in the culture drops and during washes. Any stereomicroscope with a 10x magnification can be used.
Control Unit HT Minitube 12055/0400 Heating system attached to the stereomicroscope.
Heated Microscope Stage Minitube 12055/0003 Heating system attached to the stereomicroscope.
Dextran-Red Thermo Scientific D1828 A sterile 10mg/ml solution is used to inject.
Mineral Oil sigma M8410 Keep the mineral oil at room temperature and  protected from light using foil paper.
KSOMaa Evolve Bovine Zenit ZEBV-100 Supplemented with 4mg/ml BSA. KSOM plates for embryo culture should be equilibrated in an incubator for at least 4 hours before use.
FBS Gemini-Bio 100-525 Use a stem-cell qualified FBS.
Zygotes Zygotes are injected 17-20 hpf and can be in-vitro- or in-vivo-derived.
NaCl Sigma S5886 Final concentration: 107.7mM. Component of SOF-HEPES medium.
KCl Sigma P5405 Final concentration: 7.16mM. Component of SOF-HEPES medium.
KH2PO4 Sigma P5655 Final concentration: 1.19mM. Component of SOF-HEPES medium.
MgCL2 6H2O Sigma M2393 Final concentration: 0.49mM. Component of SOF-HEPES medium.
Sodium DL-lactate Sigma L4263 Final concentration: 5.3mM. Component of SOF-HEPES medium.
CaCl2-2H2O  Sigma C7902 Final concentration: 1.71mM. Component of SOF-HEPES medium.
D-(−)-Fructose  Sigma F3510 Final concentration: 0.5mM. Component of SOF-HEPES medium.
HEPES  Sigma H4034 Final concentration: 21mM. Component of SOF-HEPES medium.
MEM-NEAA Sigma M7145 Final concentration: 1X. Component of SOF-HEPES medium.
BME-EAA Sigma B6766 Final concentration: 1X. Component of SOF-HEPES medium.
NaHCO3 Sigma S5761 Final concentration: 4mM. Component of SOF-HEPES medium.
Sodium pyruvate Sigma P4562 Final concentration: 0.33mM. Component of SOF-HEPES medium.
Glutamax Gibco 35050 Final concentration: 1mM. Component of SOF-HEPES medium.
BSA Sigma A-3311 Final concentration: 1mg/ml. Component of SOF-HEPES medium.
Gentamicin Sigma G-1397 Final concentration: 5μg/ml. Component of SOF-HEPES medium.
Water for embryo transfer Sigma W1503 Component of SOF-HEPES medium.
SOF-HEPES medium Made in the lab pH 7.3-7.4, 280±10 mOs. Filter sterilized through a 22μm filter can be stored in the fridge at 4° C for 1 month. Warm in 37 °C water bath before use.

References

  1. McEvoy, T., Coull, G., Broadbent, P., Hutchinson, J., Speake, B. Fatty acid composition of lipids in immature cattle, pig and sheep oocytes with intact zona pellucida. J Reprod Fertil. 118 (1), 163-170 (2000).
  2. Brinster, R. L., Chen, H. Y., Trumbauer, M. E., Yagle, M. K., Palmiter, R. D. Factors affecting the efficiency of introducing foreign DNA into mice by microinjecting eggs. Proc Natl Acad Sci U S A. 82 (13), 4438-4442 (1985).
  3. Ross, P. J., et al. Parthenogenetic activation of bovine oocytes using bovine and murine phospholipase C zeta. BMC Dev Biol. 8 (1), (2008).
  4. Canovas, J., Cibelli, J. B., Ross, P. J. Jumonji domain-containing protein 3 regulates histone 3 lysine 27 methylation during bovine preimplantation development. Proc Natl Acad Sci U S A. 109 (7), 2400-2405 (2012).
  5. Bogliotti, Y. S., et al. 4 Developmental outcomes and effiency of two CRISPR/Cas9 microinjection methods in bovine zygotes. Reprod Fertil Dev. 27 (1), 94-94 (2015).
  6. Bakhtari, A., Ross, P. J. DPPA3 prevents cytosine hydroxymethylation of the maternal pronucleus and is required for normal development in bovine embryos. Epigenetics. 9 (9), 1271-1279 (2014).
  7. Yaul, M., Bhatti, R., Lawrence, S. Evaluating the process of polishing borosilicate glass capillaries used for fabrication of in-vitro fertilization (iVF) micro-pipettes. Biomed Microdevices. 10 (1), 123-128 (2008).
  8. Sutter Instrument. . Pipette Cookbook 2015 P-97 & P-1000 Micropipette Pullers. , (2015).
  9. Sutter Instrument. . P-97 Flaming/BrownTM Micropipette Puller Operation Manual Rev. 2.30 – DOM (20140825). , (2014).
  10. Cibelli, J. B., Lanza, R. P., Campbell, K. H. S., West, M. D. . Principles of cloning. , (2002).
  11. Wang, B., et al. Expression of a reporter gene after microinjection of mammalian artificial chromosomes into pronuclei of bovine zygotes. Mol Reprod Dev. 60 (4), 433-438 (2001).
check_url/54465?article_type=t

Play Video

Cite This Article
Bogliotti, Y. S., Vilarino, M., Ross, P. J. Laser-assisted Cytoplasmic Microinjection in Livestock Zygotes. J. Vis. Exp. (116), e54465, doi:10.3791/54465 (2016).

View Video