Summary

In eingehenden Physiologische Analyse definierter Zellpopulationen bei der akuten Gewebeschnitten der Maus Vomeronasalorgans

Published: September 10, 2016
doi:

Summary

Here, we describe a physiological approach that allows identification and in-depth analysis of a defined population of sensory neurons in acute coronal tissue slices of the mouse vomeronasal organ using whole-cell patch-clamp recordings.

Abstract

In most mammals, the vomeronasal organ (VNO) is a chemosensory structure that detects both hetero- and conspecific social cues. Vomeronasal sensory neurons (VSNs) express a specific type of G protein-coupled receptor (GPCR) from at least three different chemoreceptor gene families allowing sensitive and specific detection of chemosensory cues. These families comprise the V1r and V2r gene families as well as the formyl peptide receptor (FPR)-related sequence (Fpr-rs) family of putative chemoreceptor genes. In order to understand the physiology of vomeronasal receptor-ligand interactions and downstream signaling, it is essential to identify the biophysical properties inherent to each specific class of VSNs.

The physiological approach described here allows identification and in-depth analysis of a defined population of sensory neurons using a transgenic mouse line (Fpr-rs3-i-Venus). The use of this protocol, however, is not restricted to this specific line and thus can easily be extended to other genetically modified lines or wild type animals.

Introduction

Die meisten Tiere verlassen sich stark auf ihre chemischen Sinne mit ihrer Umgebung interagieren. Der Geruchssinn spielt eine wesentliche Rolle für die Suche nach und das Essen der Bewertung, Räuber und Ortung geeigneten Paarungspartner zu vermeiden. Bei den meisten Säugetieren, besteht das olfaktorische System von mindestens vier anatomisch und funktionell unterschiedlichen peripheren Subsysteme: Haupt Riechepithel 1,2, das Grueneberg Ganglion 3,4, der Septalorgan von Masera 5,6 und das Vomeronasalorgan. Die VNO umfasst die periphere sensorische Struktur des akzessorischen olfaktorischen System (AOS), die bei der Aufdeckung von chemischen Signale eine große Rolle spielt , die 7-10 Informationen über Identität, Geschlecht, sozialen Rang und sexuellen Zustand vermitteln. Das VNO ist an der Basis der Nasenscheidewand direkt über dem Gaumen befindet. Bei Mäusen, ist es ein bilaterales blind endende Rohr in einer knorpeligen Kapsel eingeschlossen 13.11. Die Orgel besteht sowohl aus einem sichelförmigen medialen Sinnes epithelium, die die VSNs und eines nicht-sensorische Teil auf der lateralen Seite beherbergt. Zwischen beiden Epithelien liegt ein Schleim gefüllten Lumen , das 14 in die Nasenhöhle über die schmalen vomeronasal Kanal verbunden ist. Eine große seitliche Blutgefäß in dem nicht-sensorischen Gewebe stellt einen vaskulären Pumpmechanismus Eintritt von relativ großen, meist nicht flüchtigen Moleküle wie Peptide oder kleine Proteine ​​in die VNO Lumen durch Unterdruck 15,16 zu erleichtern. Die Bauteile des VNO sind bei der Geburt vorhanden und das Organ erreicht Erwachsenengröße kurz vor der Pubertät 17. Doch ob das Nagetier AOS bei Jugendlichen bereits funktionsfähig ist , ist noch Gegenstand von 18-20 zu diskutieren.

VSNs beide zeichnen sich durch ihre epithelialen Lage und der Art des Rezeptors sie zum Ausdruck bringen. VSNs zeigen eine bipolare Morphologie mit einem unmyelinated Axon und einem einzigen apikalen Dendriten, die in Richtung des Lumens ragt und endet in einem mikrovillösen dendritischen Knopf. VSN axons fasciculate die vomeronasal Nerven zu bilden, die die Knorpelkapsel an der dorso-kaudalen Ende verlässt, steigt entlang der Scheidewand, übergibt die Siebbeinplatte und Projekte mit dem Zubehörriechkolben (AOB) 21,22. Die vomeronasal Sinnesepithel besteht aus zwei Schichten: die apikale Schicht näher an der luminalen Seite befindet und Häfen sowohl V1R- und alle, aber eine Art von FPR-rs-exprimierenden Neuronen. Diese Neuronen koexprimiert die G-Protein – α-Untereinheit G & agr; i2 und Projekt an den vorderen Teil des AOB 23-25. Sensorischen Neuronen befindet sich in den mehr Basalschicht express V2Rs oder FPR-RS1 neben G & agr; o und ihre Axone zu den hinteren Bereich des 26-28 AOB senden.

Vomeronasal Neuronen werden durch ziemlich kleine Semiochemicals 29-33 (V1Rs) oder proteinöse Verbindungen 34-38 (V2Rs) , die sezerniert werden in verschiedene Körperflüssigkeiten, wie Urin, Speichel und Tränenflüssigkeit wahrscheinlich aktiviert 37,39-41 </sup>. In situ – Experimente haben gezeigt , dass auch durch VSNs formylierte Peptide und verschiedene antimikrobielle / Entzündung-verknüpften Verbindungen 25,42 sind aktiviert. Darüber hinaus äußerte heterolog FPR-rs – Proteine ​​Agonisten Spektren mit FPR im Immunsystem in jedem Fall teilen, eine mögliche Rolle als Detektoren für Krankheit in Artgenossen oder verdorbene Lebensmittel Quellen angibt , 25 (siehe 43 Referenz).

Fundamental zum Verständnis Rezeptor-Ligand-Beziehungen und nachgeschalteten Signalkaskaden in spezifischen VSN Populationen ist eine detaillierte Bewertung ihrer grundlegenden biophysikalischen Eigenschaften in einer natürlichen Umgebung. In der Vergangenheit hat die Analyse von zellulären Signal stark von gentechnisch veränderten Tieren zugute , die eine definierte Population von Neuronen durch Koexpression ein fluoreszierendes Markerprotein 30,44-49 markieren. In diesem Protokoll eine transgene Mauslinie, die FPR-RS3 zusammen mit einem fluoreszierenden Marker (fPr-RS3-i-Venus) wird zum Ausdruck verwendet.Dieser Ansatz zeigt, wie eine solche genetisch veränderten Mausstamm zu verwenden, um durchführen elektro Analyse einer optisch erkennbaren Zellpopulation mit einzelnen Neurons Patch-Clamp-Aufnahmen in akuten koronaren VNO Gewebeschnitten. Ein Luftdruck getriebene Mehr barrel Perfusionssystem für Sinnesreize und pharmakologische Mittel ermöglicht eine schnelle, reversible und fokale neuronale Stimulation oder Hemmung während Aufnahmen. Ganzzellableitungen in Schnittpräparaten ermöglichen eine detaillierte Analyse der Eigenschaften, der spannungsaktivierte Leitwerte sowie Aktionspotential Entladungsmuster in der natürlichen Umgebung der Zelle.

Protocol

Alle Tier Verfahren wurden in Übereinstimmung mit den örtlichen und Rechtsvorschriften der Europäischen Union über den Schutz von Tieren zu Versuchszwecken (Richtlinie 86/609 / EWG) und mit Empfehlungen von der Federation of European Laboratory Animal Science Associations (FELASA) vorgelegt verwendet. Sowohl C57BL / 6 – Mäuse und Fpr-RS3-i-Venus – Mäuse wurden in Gruppen beider Geschlechter bei Raumtemperatur auf einem 12 Stunden Licht / Dunkel – Zyklus mit Futter und Wasser ad libitum untergebracht. Für…

Representative Results

Um einen Einblick in die biophysikalischen und physiologischen Eigenschaften von definierten Zellpopulationen zu gewinnen, führen wir akuten koronaren Gewebeschnitten der Maus VNO (Abbildung 1 – 2). Nach der Dissektion Scheiben können in eiskaltem mit Sauerstoff angereicherte extrazelluläre Lösung (S 2) für mehrere Stunden gehalten werden. Bei der Aufnahme – Setup, ein ständiger Austausch mit frischem Sauerstoff angereicherten Lösung <s…

Discussion

Das VNO ist eine chemosensorischen Struktur, die Semiochemicals erkennt. Bis heute ist die Mehrheit der vomeronasal Rezeptoren werden deorphanized da nur wenige Rezeptor-Ligand-Paare wurden identifiziert. Unter denen, 58 V1rb2 beschrieben wurde spezifisch durch die männlichen Urin Pheromon 2-Heptanon 30, V2rp5 aktiviert zu werden durch das männliche spezifischen Pheromon ESP1 aktiviert werden 57 sowie V2r1b und V2rf2 SYFPEITHI 48 und SEIDLILGY von den MHC – Peptide aktiviert…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We thank Ivan Rodriguez and Benoit von der Weid for generating the FPR-rs3-i-venus mouse line, their constructive criticism and fruitful discussions. This work was funded by grants of the Volkswagen Foundation (I/83533), the Deutsche Forschungsgemeinschaft (SP724/6-1) and by the Excellence Initiative of the German federal and state governments. MS is a Lichtenberg Professor of the Volkswagen Foundation.

Materials

Chemicals
Agarose (low-gelling temperature) PeqLab 35-2030
ATP (Mg-ATP) Sigma-Aldrich A9187
Bis(2-hydroxyethyl)-2-aminoethanesulfonic acid (BES) Sigma-Aldrich B9879
Calcium chloride Sigma-Aldrich C1016
Ethylene glycol tetraacetic acid (EGTA) Sigma-Aldrich E3889
Glucose Sigma-Aldrich G8270
GTP (Na-GTP) Sigma-Aldrich 51120
(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) Sigma-Aldrich H3375
Magnesium chloride Sigma-Aldrich M8266
Potassium chloride Sigma-Aldrich P9333
Potassium hydroxide Sigma-Aldrich 03564
Sodium chloride Sigma-Aldrich S7653
Sodium hydrogen carbonate Sigma-Aldrich S5761
Sodium hydroxide Sigma-Aldrich S8045
Surgical tools and consumables
Large petri dish, 90 mm VWR decapitation, dissection of VNO capsule
Small petri dish, 35 mm VWR lid for VNO dissection, dish for embedding in agarose
Sharp large surgical scissor Fine Science Tools decapitation, removal of lower jaw
Strong bone scissors Fine Science Tools cutting incisors
Medium forceps, Dumont tweezers #2 Fine Science Tools removing skin and palate
Micro spring scissors, 8.5 cm, curved, 7 mm blades  Fine Science Tools cutting out VNO 
Two pairs of fine forceps, Dumont tweezers #5 Fine Science Tools dissecting VNO out of cartilaginous capsule
Small stainless steel spatula Fine Science Tools handling agarose block and tissue slices
Surgical scalpel cutting agarose block into pyramidal shape
Name Company Catalog Number Comments
Equipment
Amplifier HEKA Elektronik EPC-10
Borosilicate glass capillaries (1.50 mm OD/0.86 mm ID) Science Products
CCD-camera Leica Microsystems DFC360FX
Filter cube, excitation: BP 450-490, suppression: LP 515 Leica Microsystems I3
Fluorescence lamp Leica Microsystems EL6000
Hot plate magnetic stirrer Snijders 34532
Microforge  Narishige MF-830
Micromanipulator Device  Luigs & Neumann SM-5
Micropipette puller, vertical two-step Narishige PC-10 
Microscope Leica Microsystems CSM DM 6000 SP5
Noise eliminator 50/60 Hz (HumBug) Quest Scientific
Objective  Leica Microsystems HCX APO L20x/1.00 W
Oscilloscope Tektronik TDS 1001B
Osmometer  Gonotec Osmomat 030
Perfusion system 8-in-1 AutoMate Scientific
pH Meter five easy Mettler Toledo
Pipette storage jar World Precision Instruments e212
Recording chamber  Luigs & Neumann Slice mini chamber
Razor blades Wilkinson Sword GmbH Wilkinson Sword Classic
Oxygenating slice storage chamber; alternative commercial chambers are e.g. BSK1 Brain Slice Keeper (Digitimer) or the Pre-chamber (BSC-PC; Warner Instruments) custom-made
Stereo microscope Leica Microsystems S4E
Trigger interface  HEKA Elektronik TIB-14 S
Vibratome  Leica Microsystems VT 1000 S
Water bath  Memmert WNB 45

References

  1. Firestein, S. How the olfactory system makes sense of scents. Nature. 413 (6852), 211-218 (2001).
  2. Mombaerts, P. Genes and ligands for odorant, vomeronasal and taste receptors. Nat. Rev. Neurosci. 5 (4), 263-278 (2004).
  3. Fuss, S. H., Omura, M., Mombaerts, P. The Grueneberg ganglion of the mouse projects axons to glomeruli in the olfactory bulb. Eur. J. Neurosci. 22 (10), 2649-2654 (2005).
  4. Roppolo, D., Ribaud, V., Jungo, V. P., Lüscher, C., Rodriguez, I. Projection of the Grüneberg ganglion to the mouse olfactory bulb. Eur. J. Neurosci. 23 (11), 2887-2894 (2006).
  5. Adams, D. R. Fine structure of the vomeronasal and septal olfactory epithelia and of glandular structures. Microsc. Res. Tech. 23 (1), 86-97 (1992).
  6. Ma, M., et al. Olfactory signal transduction in the mouse septal organ. J. Neurosci. 23 (1), 317-324 (2003).
  7. Dulac, C., Torello, A. T. Molecular detection of pheromone signals in mammals: from genes to behaviour. Nat. Rev. Neurosci. 4 (7), 551-562 (2003).
  8. Luo, M., Katz, L. C. Encoding pheromonal signals in the mammalian vomeronasal system. Curr. Opin. Neurobiol. 14 (4), 428-434 (2004).
  9. Brennan, P. A., Kendrick, K. M. Mammalian social odours: attraction and individual recognition. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 361 (1476), 2061-2078 (2006).
  10. Tirindelli, R., Dibattista, M., Pifferi, S., Menini, A. From Pheromones to Behavior. Physiol. Rev. 89, 921-956 (2009).
  11. Jacobson, L., Trotier, D., Doving, K. B. Anatomical description of a new organ in the nose of domesticated animals by Ludvig Jacobson (1813). Chem. Senses. 23 (6), 743-754 (1998).
  12. Keverne, E. B. The Vomeronasal Organ. Science. 286 (5440), 716-720 (1999).
  13. Breer, H., Fleischer, J., Strotmann, J. The sense of smell: multiple olfactory subsystems. Cell. Mol. Life Sci. C. 63 (13), 1465-1475 (2006).
  14. Liberles, S. D. Mammalian pheromones. Annu. Rev. Physiol. 76, 151-175 (2014).
  15. Meredith, M., O’Connell, R. J. Efferent control of stimulus access to the hamster vomeronasal organ. J. Physiol. 286, 301-316 (1979).
  16. Pankevich, D., Baum, M. J., Cherry, J. A. Removal of the superior cervical ganglia fails to block Fos induction in the accessory olfactory system of male mice after exposure to female odors. Neurosci. Lett. 345 (1), 13-16 (2003).
  17. Giacobini, P., Benedetto, A., Tirindelli, R., Fasolo, A. Proliferation and migration of receptor neurons in the vomeronasal organ of the adult mouse. Brain Res. Dev. Brain Res. 123 (1), 33-40 (2000).
  18. Coppola, D. M., O’Connell, R. J. Stimulus access to olfactory and vomeronasal receptors in utero. Neurosci. Lett. 106 (3), 241-248 (1989).
  19. Hovis, K. R., et al. Activity Regulates Functional Connectivity from the Vomeronasal Organ to the Accessory Olfactory Bulb. J. Neurosci. 32 (23), 7907-7916 (2012).
  20. Mucignat-Caretta, C. The rodent accessory olfactory system. J. Comp. Physiol. A Neuroethol. Sensory, Neural, Behav. Physiol. 196 (10), 767-777 (2010).
  21. Jia, C., Halpern, M. Subclasses of vomeronasal receptor neurons: differential expression of G proteins (Giα2 and G(αo)) and segregated projections to the accessory olfactory bulb. Brain Res. 719 (1-2), 117-128 (1996).
  22. Del Punta, K., Puche, C. A., Adams, N. C., Rodriguez, I., Mombaerts, P. A divergent pattern of sensory axonal projections is rendered convergent by second-order neurons in the accessory olfactory bulb. Neuron. 35 (6), 1057-1066 (2002).
  23. Belluscio, L., Koentges, G., Axel, R., Dulac, C. A map of pheromone receptor activation in the mammalian brain. Cell. 97 (2), 209-220 (1999).
  24. Rodriguez, I., Feinstein, P., Mombaerts, P. Variable patterns of axonal projections of sensory neurons in the mouse vomeronasal system. Cell. 97 (2), 199-208 (1999).
  25. Rivière, S., Challet, L., Fluegge, D., Spehr, M., Rodriguez, I. Formyl peptide receptor-like proteins are a novel family of vomeronasal chemosensors. Nature. 459 (7246), 574-577 (2009).
  26. Martini, S., Silvotti, L., Shirazi, A., Ryba, N. J. P., Tirindelli, R. Co-expression of putative pheromone receptors in the sensory neurons of the vomeronasal organ. J. Neurosci. 21 (3), 843-848 (2001).
  27. Matsuoka, M., et al. Immunocytochemical study of Gi2alpha and Goalpha on the epithelium surface of the rat vomeronasal organ. Chem. Senses. 26 (2), 161-166 (2001).
  28. Dulac, C., Torello, A. T. Molecular detection of pheromone signals in mammals: from genes to behaviour. Nat. Rev. Neurosci. 4 (7), 551-562 (2003).
  29. Leinders-Zufall, T., et al. Ultrasensitive pheromone detection by mammalian vomeronasal neurons. Nature. 405 (6788), 792-796 (2000).
  30. Boschat, C., et al. Pheromone detection mediated by a V1r vomeronasal receptor. Nat. Neurosci. 5 (12), 1261-1262 (2002).
  31. Novotny, M. V. Pheromones, binding proteins and receptor responses in rodents. Biochem. Soc. Trans. 31, 117-122 (2003).
  32. Nodari, F., et al. Sulfated steroids as natural ligands of mouse pheromone-sensing neurons. J. Neurosci. 28 (25), 6407-6418 (2008).
  33. Isogai, Y., et al. Molecular organization of vomeronasal chemoreception. Nature. 478 (7368), 241-245 (2011).
  34. Leinders-Zufall, T., et al. MHC class I peptides as chemosensory signals in the vomeronasal organ. Science. 306 (5698), 1033-1037 (2004).
  35. Chamero, P., et al. Identification of protein pheromones that promote aggressive behaviour. Nature. 450 (7171), 899-902 (2007).
  36. Kimoto, H., Haga, S., Sato, K., Touhara, K. Sex-specific peptides from exocrine glands stimulate mouse vomeronasal sensory neurons. Nature. 437 (7060), 898-901 (2005).
  37. Ferrero, D. M., et al. A juvenile mouse pheromone inhibits sexual behaviour through the vomeronasal system. Nature. 502 (7471), 368-371 (2013).
  38. Kaur, A. W., et al. Murine pheromone proteins constitute a context-dependent combinatorial code governing multiple social behaviors. Cell. 157 (3), 676-688 (2014).
  39. Ben-Shaul, Y., Katz, L. C., Mooney, R., Dulac, C. In vivo vomeronasal stimulation reveals sensory encoding of conspecific and allospecific cues by the mouse accessory olfactory bulb. PNAS. 107 (11), 5172-5177 (2010).
  40. Kimoto, H., et al. Sex- and strain-specific expression and vomeronasal activity of mouse ESP family peptides. Curr. Biol. 17 (21), 1879-1884 (2007).
  41. Spehr, M., et al. Parallel processing of social signals by the mammalian main and accessory olfactory systems. Cell. Mol. Life Sci. C. 63 (13), 1476-1484 (2006).
  42. Chamero, P., et al. G protein G{alpha}o is essential for vomeronasal function and aggressive behavior in mice. PNAS. , (2011).
  43. Bufe, B., Schumann, T., Zufall, F. Formyl peptide receptors from immune and vomeronasal system exhibit distinct agonist properties. J. Biol. Chem. 287 (40), 33644-33655 (2012).
  44. Bozza, T., Feinstein, P., Zheng, C., Mombaerts, P. Odorant receptor expression defines functional units in the mouse olfactory system. J. Neurosci. 22 (8), 3033-3043 (2002).
  45. Grosmaitre, X., Vassalli, A., Mombaerts, P., Shepherd, G. M., Ma, M. Odorant responses of olfactory sensory neurons expressing the odorant receptor MOR23: a patch clamp analysis in gene-targeted mice. PNAS. 103 (6), 1970-1975 (2006).
  46. Oka, Y., et al. Odorant receptor map in the mouse olfactory bulb: in vivo sensitivity and specificity of receptor-defined glomeruli. Neuron. 52 (5), 857-869 (2006).
  47. Ukhanov, K., Leinders-Zufall, T., Zufall, F. Patch-clamp analysis of gene-targeted vomeronasal neurons expressing a defined V1r or V2r receptor: ionic mechanisms underlying persistent firing. J. Neurophysiol. 98 (4), 2357-2369 (2007).
  48. Leinders-Zufall, T., Ishii, T., Mombaerts, P., Zufall, F., Boehm, T. Structural requirements for the activation of vomeronasal sensory neurons by MHC peptides. Nat. Neurosci. 12 (12), 1551-1558 (2009).
  49. Pacifico, R., Dewan, A., Cawley, D., Guo, C., Bozza, T. An olfactory subsystem that mediates high-sensitivity detection of volatile amines. Cell Rep. 2 (1), 76-88 (2012).
  50. Veitinger, S., et al. Purinergic signalling mobilizes mitochondrial Ca2+ in mouse Sertoli cells. J. Physiol. 589 (Pt 21), 5033-5055 (2011).
  51. Kaur, A. W., et al. Murine pheromone proteins constitute a context-dependent combinatorial code governing multiple social behaviors. Cell. 157 (3), 676-688 (2014).
  52. Ackels, T., von der Weid, B., Rodriguez, I., Spehr, M. Physiological characterization of formyl peptide receptor expressing cells in the mouse vomeronasal organ. Front. Neuroanat. 8, 1-13 (2014).
  53. Liman, E. R., Corey, D. P. Electrophysiological characterization of chemosensory neurons from the mouse vomeronasal organ. J. Neurosci. 16 (15), 4625-4637 (1996).
  54. Cichy, A., et al. Extracellular pH Regulates Excitability of Vomeronasal Sensory Neurons. J. Neurosci. 35 (9), 4025-4039 (2015).
  55. Shimazaki, R., et al. Electrophysiological properties and modeling of murine vomeronasal sensory neurons in acute slice preparations. Chem. Senses. 31 (5), 425-435 (2006).
  56. Hagendorf, S., Fluegge, D., Engelhardt, C., Spehr, M. Homeostatic control of sensory output in basal vomeronasal neurons: activity-dependent expression of ether-à-go-go-related gene potassium channels. J. Neurosci. 29 (1), 206-221 (2009).
  57. Haga, S., et al. The male mouse pheromone ESP1 enhances female sexual receptive behaviour through a specific vomeronasal receptor. Nature. 466 (7302), 118-122 (2010).
  58. Leinders-Zufall, T., et al. A family of nonclassical class I MHC genes contributes to ultrasensitive chemodetection by mouse vomeronasal sensory neurons. J. Neurosci. 34 (15), 5121-5133 (2014).
  59. Jinek, M., et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 337, 816-821 (2012).
check_url/54517?article_type=t

Play Video

Cite This Article
Ackels, T., Drose, D. R., Spehr, M. In-depth Physiological Analysis of Defined Cell Populations in Acute Tissue Slices of the Mouse Vomeronasal Organ. J. Vis. Exp. (115), e54517, doi:10.3791/54517 (2016).

View Video