Summary

纳米丝绸制造和药物输送应用

Published: October 08, 2016
doi:

Summary

纳米颗粒正在成为有希望的药物递送系统用于范围广泛适应症。在这里,我们将介绍使用逆向工程桑蚕丝制作蚕丝纳米颗粒的简单而有效的方法。这些丝的纳米颗粒可以容易地加载有治疗有效载荷,并随后探索用于药物递送应用。

Abstract

丝是用于生物医学和制药应用的有前途的生物聚合物,由于其优异的机械特性,生物相容性和生物降解性,以及它的保护和随后释放其有效载荷响应于触发的能力。而丝可以配制成各种材料的格式,丝绸纳米颗粒正在成为有希望的药物递送系统。因此,本文涵盖了逆向工程丝茧的步骤以产生可用于产生稳定的丝纳米粒子的再生丝溶液。这些纳米颗粒随后被表征,药物加载并探索作为潜在的抗癌药物递送系统。简要地说,丝茧反向首先通过脱胶茧工程化,随后丝溶解和清理,得到水性丝溶液。接下来,再生丝溶液进行纳米沉淀产生的丝绸纳米粒子 – 一个简单而有效的方法产生均匀的纳米颗粒。根据它们的大小,ζ电位,形态和稳定在水介质中,以及其对截留化疗有效载荷和杀死人乳腺癌细胞的能力的丝的纳米颗粒的特征。总体而言,所描述的方法产生可以容易地探索应用无数均匀丝纳米颗粒,包括它们作为潜在的纳米使用。

Introduction

纳米尺寸的药物递送系统通常用来控制药物释放和递送多样化的治疗有效载荷 – 例如,蛋白质,肽和小分子量药物 – 靶细胞和组织。这些治疗的有效载荷常常结合到各种大分子药物载体,例如脂质体,水溶性聚合物(包括树枝状聚合物),以及微颗粒和纳米颗粒1。纳米颗粒(典型地在1纳米至1000纳米的粒度范围)被广泛作为潜在的药物载体,特别是用于抗癌药物递送2。成功引入Abraxane的的(装载紫杉醇120nm的尺寸的基于白蛋白的纳米颗粒)放入常规临床实践3已经催化的领域中,以便用于药物递送更多的纳米颗粒正在进入临床试验4。实体瘤一般显示较差淋巴引流,并有漏水的血管,这意味着是n高达200纳米anoparticles将被动地定位到静脉给药这些肿瘤。这种被动靶向现象被称为增强的渗透性和保留(EPR)效果,并在1986年5首次报道该EPR效应可导致50到100倍的增加中的药物浓度在肿瘤微环境中对于给定的药物剂量时药物有效负荷使用大分子药物载体的方法,而不是无药无承运人交付。设计用于抗癌药物递送载药纳米颗粒具有到达肿瘤微环境和通常必须输入特定的胞内区室,通常通过内吞摄取,用于药物,以实现其所需的治疗效果3。设计用于细胞内药物递送的纳米颗粒利用内吞作为网关进入细胞,以及克服耐药机制的路由。从纳米粒子药物释放往往是专门邻CCur函数在溶酶体( ,溶酶体药物递送)6,其中该纳米颗粒载体的pH响应性(溶酶体pH值约4.5)可以用作触发药物释放或溶酶体酶从载体7释放有效载荷。

许多不同类型的材料可以用于产生纳米颗粒( 例如,金属和许多有机和无机材料)。然而,生物聚合物不断涌现,因为他们已知的生物相容性,生物可降解性和低毒性8吸引力的材料。许多生物聚合物正在探索,其中包括白蛋白,海藻酸钠,壳聚糖和丝绸。其中,丝绸已成为一个有前途的竞争者发展注入药物输送系统9。各种类型的丝绸是由一些节肢动物,包括蜘蛛( 例如络clavipes)和蚕( 例如家蚕生产)。蚕丝被使用更为分配延长sively比蜘蛛丝,因为蚕驯化充分,因此,其丝绸代表重现的原料。蚕丝是食品和药物管理局(FDA)批准的材料供人类使用,特别是作为一个缝合材料;它在人类中健壮的安全记录,并已知在体内 10降解。丝的降解轮廓可以微调以从小时(低结晶丝),以12个月或以上(高结晶丝)的范围内。丝降解产物是无毒的并且在主体10中被代谢。丝绸结构赋予结合小分子量化合物和大分子蛋白药物11的能力,使其成为一个好材料药物控释。蛋白质药物( 例如,抗体)易受变性,聚集,蛋白水解裂解和清除由免疫系统。然而,丝稳定的治疗性蛋白质,由于其纳米晶重的缓冲能力gions及其在纳米尺度11来调整水分的能力。这些独特的功能提供人身保护,并降低流动性的有效载荷11和通常不与其他(生物)聚合物看到。许多抗癌药物递送系统,例如基于丝的水凝胶12,薄膜13-15和纳米颗粒16,17,现在已经开发了利用这些特征(参考文献18,19中综述)

此处,丝纳米颗粒通过确定在延长的时间帧的大小和电荷特征。阿霉素,临床相关的抗癌药物,被用来作为在用载药丝纳米颗粒处理过的三阴性人类乳癌细胞对药物装载和细胞毒性的研究模型药物。

Protocol

1.从家蚕蚕茧反向工程的丝溶液的制备注:此方法是基于其他地方12,27描述的协议。 5切断克干蚕茧用剪刀分成5 x 5毫米件。卸下所有脏层。 称出4.24克碳酸钠和小心添加此2升沸腾蒸馏水的。 注意:这产生了0.02 2M碳酸钠溶液。 切件茧添加到沸腾的碳酸钠溶液煮沸60分钟,脱胶的蚕丝纤维。炒出的丝绸偶尔确保均匀样加工。 除去脱胶的丝,用20分…

Representative Results

进行统计学分析数据如以前17详细说明。用于随后的Bonferroni的多重比较事后检验对多个样品采样对和方差(ANOVA)的单向分析的学生t检验。一个星号表示统计显着性,如下所示:* P <0.05和** P <0.001。所有数据表示为平均值±标准差(SD)和在括号中的数字表示的独立实验的数目。 再生丝溶液的制备,随后滴加到丙酮…

Discussion

各种方法可用来生产丝纳米颗粒,包括聚乙烯醇共混20,喷雾干燥21,盐析22,毛细管网点印刷23,超临界CO 2的沉淀24和纳米沉淀16,25(参照26中综述)。然而,纳米沉淀,由于其整体简单,是用于产生丝纳米颗粒的最流行的技术。因此,本研究的目的是要应用纳米沉淀到反向工程丝来制造基于丝的纳米颗粒,可用于各种应用,包括溶…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This research was supported by a Marie Curie FP7 Career Integration Grant 334134 within the seventh European Union Framework Program.

Materials

Acetone VWR International, Radnor, PA, USA 20066.33
Automated Critical Point Dryer Leica Microsystems, Wetzlar, Germany EM CPD300
Balancing  Mettler Toledo, Greifensee, Switzerland NewClassic MS
Black polystyrene microplate , 96 well Sigma-Aldrich, St. Louis, MO, USA 3991
Capillary cell (DTS 1070) Malvern Instrument, Worcestershire, UK DTS107
Carbon adhesive disc Agar Scientific, Essex, UK G3347N
Centrifuge  Hermle Labortechnik, Wehingen, Germany Z323K
Centrifuge  Beckman Coulter, Brea, CA, USA Avanti J-E, Rotor: J20
Centrifuge  Beckman Coulter, Brea, CA, USA Optima L-70K, Rotor: 50.2 Ti, Adaptor 303392
Coater, low vacuum Leica Microsystems, Wetzlar, Germany EM ACE200
Cuvettes, polystyrene, disposable Fisher Scientific, Waltham, MA, USA FB55147
Doxorubixin  LC Laboratories, Boston, MA, USA D4000
Electronic pipetting, Easypet  Eppendorf, Hamburg, Germany N/A
FE-SEM Hitachi High-Technologies, Krefeld, Germany SU6600
Fetal Bovine Serum Thermo Scientific, Waltham, MA, USA 16000-044
Freeze dryer Martin Christ, Osterode, Germany Epsilon 2-4
Heat inactivated Bombyx mori silk cocoons Tajima Shoji, Kanagawa, Japan N/A
Hotplate with Stirrer Bibby Scientific, Stanffordshire, UK US 152
Incubator Memmert, Schwabach, Germany INB 200
Insulin, human recombinant, zinc solution Thermo Scientific, Waltham, MA, USA 12585-014
Lithium bromide Acros Organics, Geel, Belgium AC199870025
MDA-MB-231 ATCC, Manassas, VA, U.S.A N/A
Micropipette and tips Eppendorf, Hamburg, Germany N/A
Microplate Reader Molecular devices, Sunnyvale, CA, USA SpectraMax M5
Oak Ridge High-Speed Centrifuge Tubes, 50 ml Thermo Scientific, Waltham, MA, USA N/A
Open-Top Thickwall Polycarbonate tube, 4 ml Beckman Coulter, Brea, CA, USA 355645
Penicilin/streptomycin  Thermo Scientific, Waltham, MA, USA 15140-122
RPMI medium Thermo Scientific, Waltham, MA, USA 11875-093
Serological pipettes, 5 ml Sigma-Aldrich, St. Louis, MO, USA
Silicon wafers Agar Scientific, Essex, UK G3391
Slide-A-Lyzer Dialysis cassettes, 3.5K MWCO, 15 ml Thermo Scientific, Waltham, MA, USA 87724
Sodium carbonate anhydrous Fisher Scientific, Waltham, MA, USA S/2840/62
Specimen stubs for SEM Agar Scientific, Essex, UK G301
Ultrasonic homogenizer Bandelin, Berlin, Germany Sonoplus HD 2070
UV transparent microplate, 96 well Sigma-Aldrich, St. Louis, MO, USA 3635
Vortex IKA, Staufen, Germany Genius 3
Zetasizer Malvern Instrument, Worcestershire, UK Nano ZS
Zetasizer Software version 7.11 DLS software
Micro Modulyo  Thermo Fisher 230 Freeze drying system 

References

  1. Haley, B., Frenkel, E. Nanoparticles for drug delivery in cancer treatment. Urol. Oncol. 26 (1), 57-64 (2008).
  2. Sun, T., Zhang, Y. S., Pang, B., Hyun, D. C., Yang, M., Xia, Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem. Int. Ed. 53 (46), 12320-12364 (2014).
  3. Davis, M. E., Chen, Z. G., Shin, D. M. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov. 7 (9), 771-782 (2008).
  4. Sheridan, C. Proof of concept for next-generation nanoparticle drugs in humans. Nature Biotechnol. 30 (6), 471-473 (2012).
  5. Matsumura, Y., Hitoshi, M. A New Concept for Macromolecular Therapeutics in Cancer Chemotherapy: Mechanism of Tumoritropic Accumulation of Proteins and the Antitumor Agent Smancs. Cancer Res. 46, 6387 (1986).
  6. De Duve, C., De Barsy, T., Poole, B., Trouet, A., Tulkens, P., Van Hoof, F. Lysosomotropic agents. Biochem. Pharmacol. 23 (18), 2495-2531 (1974).
  7. Duncan, R., Richardson, S. C. W. Endocytosis and intracellular trafficking as gateways for nanomedicine delivery: opportunities and challenges. Mol. Pharm. 9 (9), 2380-2402 (2012).
  8. Vishakha, K., Kishor, B., Sudha, R. Natural Polymers – A Comprehensive Review. Int. J. Pharm. Biomed. Res. 3 (4), 1597-1613 (2012).
  9. Pritchard, E. M., Kaplan, D. L. Silk fibroin biomaterials for controlled release drug delivery. Expert. Opin. Drug Del. 8 (6), 797-811 (2011).
  10. Thurber, A. E., Omenetto, F. G., Kaplan, D. L. In vivo bioresponses to silk proteins. Biomaterials. 71, 145-157 (2015).
  11. Pritchard, E. M., Dennis, P. B., Omenetto, F., Naik, R. R., Kaplan, D. L. Physical and chemical aspects of stabilization of compounds in silk. Biopolymers. 97 (6), 479-498 (2012).
  12. Seib, F. P., Pritchard, E. M., Kaplan, D. L. Self-Assembling Doxorubicin Silk Hydrogels for the Focal Treatment of Primary Breast. Adv. Funct. Mater. 23 (1), 58-65 (2013).
  13. Seib, F. P., Kaplan, D. L. Doxorubicin-loaded silk films: drug-silk interactions and in vivo performance in human orthotopic breast cancer. Biomaterials. 33 (33), 8442-8450 (2012).
  14. Seib, F. P., Coburn, J., et al. Focal therapy of neuroblastoma using silk films to deliver kinase and chemotherapeutic agents in vivo. Acta. Biomater. 20, 32-38 (2015).
  15. Coburn, J. M., Na, E., Kaplan, D. L. Modulation of vincristine and doxorubicin binding and release from silk films. J. Control. Release. 220, 229-238 (2015).
  16. Seib, F. P., Jones, G. T., Rnjak-Kovacina, J., Lin, Y., Kaplan, D. L. pH-dependent anticancer drug release from silk nanoparticles. Adv. Healthc. Mater. 2 (12), 1606-1611 (2013).
  17. Wongpinyochit, T., Uhlmann, P., Urquhart, A. J., Seib, F. P. PEGylated Silk Nanoparticles for Anticancer Drug Delivery. Biomacromolecules. 16 (11), 3712-3722 (2015).
  18. Seib, F. P., Kaplan, D. L. Silk for Drug Delivery Applications: Opportunities and Challenges. Isr. J. Chem. 53 (9-10), 1-12 (2013).
  19. Yucel, T., Lovett, M. L., Kaplan, D. L. Silk-based biomaterials for sustained drug delivery. J. Control. Release. 190, 381-397 (2014).
  20. Wang, X., Yucel, T., Lu, Q., Hu, X., Kaplan, D. L. Silk nanospheres and microspheres from silk/pva blend films for drug delivery. Biomaterials. 31 (6), 1025-1035 (2010).
  21. Qu, J., Wang, L., Hu, Y., You, R., Li, M. Preparation of Silk Fibroin Microspheres and Its Cytocompatibility. J. Biomater. Nanobiotechnol. 4, 84-90 (2013).
  22. Lammel, A., Hu, X., Park, S., Kaplan, D., Scheibel, T. Controlling silk fibroin particle features for drug delivery. Biomaterials. 31 (16), 4583-4591 (2010).
  23. Gupta, V., Aseh, A., Rìos, C. N., Aggarwal, B. B., Mathur, A. B. Fabrication and characterization of silk fibroin-derived curcumin nanoparticles for cancer therapy. Int. J. Nanomedicine. 4, 115-122 (2009).
  24. Zhao, Z., et al. Generation of silk fibroin nanoparticles via solution-enhanced dispersion by supercritical CO2. Ind. Eng. Chem. Res. 52 (10), 3752-3761 (2013).
  25. Tudora, M., Zaharia, C., Stancu, I. Natural silk Fibroin micro-and nanoparticles with potential uses in drug delivery systems. U.P.B. Sci. Bull., Series B. 75 (1), 43-52 (2013).
  26. Zhao, Z., Li, Y., Xie, M. B. Silk Fibroin-Based Nanoparticles for Drug Delivery. Int. J. Mol. Sci. 16 (3), 4880-4903 (2015).
  27. Rockwood, D., Preda, R., Yücel, T. Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc. 6 (10), 1-43 (2011).
  28. Seib, F. P., Müller, K., Franke, M., Grimmer, M., Bornhäuser, M., Werner, C. Engineered extracellular matrices modulate the expression profile and feeder properties of bone marrow-derived human multipotent mesenchymal stromal cells. Tissue. Eng. Part A. 15 (10), 3161-3171 (2009).
  29. Lai, P., Daear, W., Löbenberg, R., Prenner, E. J. Overview of the preparation of organic polymeric nanoparticles for drug delivery based on gelatine, chitosan, poly(d,l-lactide-co-glycolic acid) and polyalkylcyanoacrylate. Colloids Surf., B, Biointerfaces. 118, 154-163 (2014).
  30. Subia, B., Kundu, S. C. Drug loading and release on tumor cells using silk fibroin-albumin nanoparticles as carriers. Nanotechnology. 24 (3), 035103 (2013).
  31. Zhang, Y. Q., Shen, W. D., Xiang, R. L., Zhuge, L. J., Gao, W. J., Wang, W. B. Formation of silk fibroin nanoparticles in water-miscible organic solvent and their characterization. J. Nanopart. Res. 9 (5), 885-900 (2006).
  32. Jin, H. J., Kaplan, D. L. Mechanism of silk processing in insects and spiders. Nature. 424 (6952), 1057-1061 (2003).
  33. Yhr Bae, ., Park, K. Targeted drug delivery to tumors: myths, reality and possibility. J. Control. Release. 153 (3), 198-205 (2011).
  34. Lammel, A., Schwab, M., Hofer, M., Winter, G., Scheibel, T. Recombinant spider silk particles as drug delivery vehicles. Biomaterials. 32 (8), 2233-2240 (2011).
  35. Holliday, D. L., Speirs, V. Choosing the right cell line for breast cancer research. Breast. Cancer. Res. 13, 215 (2011).
check_url/54669?article_type=t

Play Video

Cite This Article
Wongpinyochit, T., Johnston, B. F., Seib, F. P. Manufacture and Drug Delivery Applications of Silk Nanoparticles. J. Vis. Exp. (116), e54669, doi:10.3791/54669 (2016).

View Video