Summary

在小型动物模型的动静脉(AV)循环研究血管生成和血管组织工程

Published: November 02, 2016
doi:

Summary

我们描述了动静脉(AV)循环作为在一个孤立的和充分表征的环境在体内分析血管模型的生成一个显微方法。这种模式不仅对血管生成的调查是有用的,但也最适合用于工程轴向血管化和移植的组织。

Abstract

A functional blood vessel network is a prerequisite for the survival and growth of almost all tissues and organs in the human body. Moreover, in pathological situations such as cancer, vascularization plays a leading role in disease progression. Consequently, there is a strong need for a standardized and well-characterized in vivo model in order to elucidate the mechanisms of neovascularization and develop different vascularization approaches for tissue engineering and regenerative medicine.

We describe a microsurgical approach for a small animal model for induction of a vascular axis consisting of a vein and artery that are anastomosed to an arteriovenous (AV) loop. The AV loop is transferred to an enclosed implantation chamber to create an isolated microenvironment in vivo, which is connected to the living organism only by means of the vascular axis. Using 3D imaging (MRI, micro-CT) and immunohistology, the growing vasculature can be visualized over time. By implanting different cells, growth factors and matrices, their function in blood vessel network formation can be analyzed without any disturbing influences from the surroundings in a well controllable environment.

In addition to angiogenesis and antiangiogenesis studies, the AV loop model is also perfectly suited for engineering vascularized tissues. After a certain prevascularization time, the generated tissues can be transplanted into the defect site and microsurgically connected to the local vessels, thereby ensuring immediate blood supply and integration of the engineered tissue. By varying the matrices, cells, growth factors and chamber architecture, it is possible to generate various tissues, which can then be tailored to the individual patient’s needs.

Introduction

大多数组织和器官在人体内是依赖供给营养物质,交换气体和除去废产物的官能血管网络。该系统所造成的局部或全身血管问题的故障可能导致严重的疾病,众说纷纭。此外,在研究领域,如组织工程和再生医学,人工产生的组织或器官移植中的功能性血管网络是成功的临床应用是必不可少的。

数十年的研究人员一直在调查参与生长脉管获得,以便找到新的治疗干预,并提供更好的预防血管疾病的更深入的了解病理情况的确切机制。在第一步骤中,如细胞-细胞相互作用或分子的血管系统的细胞的作用基本过程通过体外 2D或3D通常调查实验。传统的二维模型很容易执行,已经非常成熟,并已大大更好地理解这些过程做出了贡献。对于在1980年第一次,Folkman 。报道明胶涂层板1毛细血管内皮细胞体外血管生成播种。这立即让位给对内皮细胞管形成测定2,迁移试验3和不同细胞类型4的共培养进一步2D血管生成的实验,以及其他众多的出版物。这些试验至今仍在使用,并接受体外方法标准中。

然而,该实验装置并不总是适合于体内细胞行为的研究,因为大多数的细胞类型需要3D环境,以形成相关的生理组织结构5。它可以表明3D矩阵的结构是决定性的毛细管morphogenesi第6和细胞-细胞外基质(ECM)的相互作用和三维培养条件调节参与肿瘤血管生成7的重要因素。的3D矩阵提供了复杂的机械输入,可以绑定效应蛋白,建立组织规模的溶质浓度梯度。此外,它是为了在体内形态发生和重塑步骤模仿在复杂的组织5认为是必要的。在这些系统中,无论是血管发生和血管生成,可以研究。而血管发生描述了从预先存在的血管8毛细血管的发芽,血管是指通过血管内皮细胞或它们的祖细胞9,10-血管的从头形成。血管成熟在一个名为'动脉' 通过平滑肌细胞11的招聘过程进行描述。 体外模型一个典型的血管生成是血管内皮细胞从现有的单层萌小号种植作为凝胶表面的单层,嵌入式凝胶微球内表面,或通过建立内皮细胞球体12。在血管模型单一内皮细胞被截留在三维凝胶。它们与相邻的内皮细胞相互作用以形成血管结构和网络从头,典型地结合支撑单元12。

然而,即使在体外模型体内设置不能模仿复杂的3D完全给定的细胞-细胞的大量和细胞-ECM相互作用的13。具有较高的体外活性物质不会自动显示在体内相同的效果, 反之亦然 14。对血管的综合分析处理,迫切需要在体内模型 ,更好地模拟在体内的情况发展。大范围的体内血管生成测定法在文献中描述,包括鸡胚绒毛尿囊膜分析(CAM),斑马鱼模型,角膜血管生成测定,背侧空气囊模型中,背皮褶室中,皮下肿瘤模型14。然而,这些测定通常与局限性,如快速形态的变化,从在CAM测定中,或在角膜血管生成测定15在有限的空间已经存在的在识别新的毛细血管的问题相关联。此外,使用非哺乳动物系统( 例如 ,斑马鱼模型16),这导致的问题中的异种移植17。在皮下肿瘤模型中,不能被分析血管生成只从肿瘤本身始发由于相邻组织大大有助于血管形成过程。此外,周围组织可具有在塑造肿瘤微环境18的一个决定性的作用。

不仅为研究血管生成或血管有强烈的NE编了一个标准化和良好的特点体内模型也为研究组织工程和再生医学的不同血管的策略。今天,复杂的人造器官或组织的产生是可能在体外体内 。生物印刷3D为生成复杂的3D功能生活组织19按需制造技术。此外,可以用于产生组织20甚至自己的身体的生物反应器可以用作生物反应器21。然而,主要的障碍人工生成组织的成功应用是工程化构建体中缺乏血管形成。移植后宿主的脉管系统直接连接是生存的主要先决条件,特别是在大型的人工组织或器官的情况下。

体外体内 prevascularization策略不同分别DEVELOPED建立在结构功能性微血管植入22之前。 在体外预成形设计的毛细管的支架上的小鼠的背部皮肤的植入导致了小鼠脉管的快速吻合每天23内。与此相反,由组装成一个三维prevascular网络人类间质干细胞和人脐静脉内皮细胞的球状体共培养在体内植入后进一步发展。然而,吻合与宿主脉管限于24。首先,在血管不佳的缺陷,如坏死或照射区,这个所谓的外在血管 – 从周围区域进入支架血管的向内生长 – 经常失败。固有血管化,另一方面,是基于血管的轴线的新的毛细血管发芽到支架25的来源。使用轴向血管的方法中,工程组织可以与它的血管轴被移植,并连接到在接收站点本地船只。立即移植后,将组织充分的氧和营养物,它创建用于优化集成在合适的条件的支持。

由于模型研究体内血管生成和表彰产生轴向血管组织的重要性日益有限,我们开发埃罗尔和斯培拉的显微外科方法进一步产生在动物模型26动静脉(AV)循环。使用一个完全封闭的注入室使得这种方法非常适合研究根据“控制”,以及其特征在于在体内条件( 图1)的血管形成。这种模式不仅对血管生成的调查有用的,但也最适合于支架用于组织ENGIN轴向血管eering目的。

Protocol

埃尔兰根 – 纽伦堡的弗里德里希 – 亚历山大大学的动物护理委员会(FAU)和中弗兰肯的政府,德国,批准所有的实验。对于实验,雄性Lewis大鼠体重为300 – 被用来350克。 1.动静脉循环模型大鼠 注入步骤(图2) 麻醉使用通过管道连接到异氟醚蒸发和盖子封闭一种特殊的塑料盒。打开供给气体和0.8之间流量计 – 1.5升/分。 放置在感应塑料盒大鼠和密封的…

Representative Results

组织工程 骨组织工程的目的,许多不同的骨替代,在小动物大鼠AV环模型27,28,33,34植入。血管可以完全由3D显微计算机断层摄影术(微CT)( 图3A)来证明。经处理的牛松质骨(PBCB)矩阵的血管形成是环基中显著高于与没有血管的组。不断增长,maturating血管网8周以上的注入室之内的发展。 4和8周之间,观察到朝向构建体的中心的血管…

Discussion

十多年来,我们已成功地用于动静脉(AV)用于组织工程目的, 在体内循环,研究血管生成的小动物模型。我们可以证明这种显微模型是非常适合于工程不同组织,它也可以用于血管发生或抗血管生成的研究。

关于到现有/替代方法的技术意义
工程组织或器官需要的功能血管网络来提供他们所需要移植到缺损部位41后,他们的生存和成功整合?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们要感谢以下机构支持我们的AV循环的研究:施德楼基金会,弗里茨Erler博士全宗,否则克朗Fesenius基金会,百特医疗用品有限公司,东风集团,IZKF / ELAN / EFI /性别办公室和多样性的Forschungsstiftung MEDIZIN ,埃尔兰根 – 纽伦堡(FAU),AO基金会,曼弗雷德·罗斯基金会,薛虹,汉斯格奥尔格盖斯基金会,德意志学术Austauschdienst(DAAD),德国和高等教育部和科研,伊拉克的弗里德里希 – 亚历山大大学。我们要感谢斯特凡·弗莱舍,滨海米尔德,卡特琳·科恩和伊尔莎·阿诺德Herberth的出色的技术支持。

Materials

0.9% sodium chloride Berlin-Chemie AG 34592508
11-0 Ethilon / polyamide 6/6 Ethicon EH7438G
4-0 Vicryl / polygalactin 910 Ethicon V392H
6-0 Prolene / polypropylene Ethicon 8695H
aluminium spray Pharma Partner Vertriebs-GmbH 1020
antiseptics  BODE Chemie GmbH 
Catheter  B Braun Meslungen AG 4251612-02
contrast agent Flowtech  MV-122
embutramide, mebezonium iodide, tetracaine hydrochloride injectable solution  Intervet International GmbH
encre de chine intense indian ink Lefranc & Bourgeois 
Enrofloxacin  Bayer AG
eye ointment  Bayer AG
Formalin 4 %  Carl Roth GmbH & Co. KG P087.4
Heparin Ratiopharm GmbH
isoflurane  Abbott Laboratories 6055482
Lewis rat, male Charles River Laboratories
Metamizol-Natrium  Ratiopharm GmbH
papaverine / Paveron N Linden Arzneimittel-Vertrieb-GmbH
tramadol / Tramal Grünenthal GmbH

References

  1. Folkman, J., Haudenschild, C. Angiogenesis in vitro. Nature. 288 (5791), 551-556 (1980).
  2. DeCicco-Skinner, K. L., et al. Endothelial cell tube formation assay for the in vitro study of angiogenesis. J Vis Exp. (91), e51312 (2014).
  3. Puddu, A., Sanguineti, R., Traverso, C. E., Viviani, G. L., Nicolo, M. Response to anti-VEGF-A treatment of endothelial cells in vitro. Exp Eye Res. 146, 128-136 (2016).
  4. Li, H., Daculsi, R., Bareille, R., Bourget, C., Amedee, J. uPA and MMP-2 were involved in self-assembled network formation in a two dimensional co-culture model of bone marrow stromal cells and endothelial cells. J Cell Biochem. 114 (3), 650-657 (2013).
  5. Griffith, L. G., Swartz, M. A. Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol. 7 (3), 211-224 (2006).
  6. Nehls, V., Herrmann, R. The configuration of fibrin clots determines capillary morphogenesis and endothelial cell migration. Microvasc Res. 51 (3), 347-364 (1996).
  7. Fischbach, C., et al. Cancer cell angiogenic capability is regulated by 3D culture and integrin engagement. Proc Natl Acad Sci U S A. 106 (2), 399-404 (2009).
  8. Logsdon, E. A., Finley, S. D., Popel, A. S., Mac Gabhann, F. A systems biology view of blood vessel growth and remodelling. J Cell Mol Med. 18 (8), 1491-1508 (2014).
  9. Kaully, T., Kaufman-Francis, K., Lesman, A., Levenberg, S. Vascularization–the conduit to viable engineered tissues. Tissue Eng Part B Rev. 15 (2), 159-169 (2009).
  10. Risau, W. Mechanisms of angiogenesis. Nature. 386 (6626), 671-674 (1997).
  11. Carmeliet, P. Mechanisms of angiogenesis and arteriogenesis. Nat Med. 6 (4), 389-395 (2000).
  12. Morin, K. T., Tranquillo, R. T. In vitro models of angiogenesis and vasculogenesis in fibrin gel. Exp Cell Res. 319 (16), 2409-2417 (2013).
  13. Ucuzian, A. A., Greisler, H. P. In vitro models of angiogenesis. World J Surg. 31 (4), 654-663 (2007).
  14. Staton, C. A., Reed, M. W., Brown, N. J. A critical analysis of current in vitro and in vivo angiogenesis assays. Int J Exp Pathol. 90 (3), 195-221 (2009).
  15. Tahergorabi, Z., Khazaei, M. A review on angiogenesis and its assays. Iran J Basic Med Sci. 15 (6), 1110-1126 (2012).
  16. Agostini, S., et al. Barley beta-glucan promotes MnSOD expression and enhances angiogenesis under oxidative microenvironment. J Cell Mol Med. 19 (1), 227-238 (2015).
  17. Zhang, B., Xuan, C., Ji, Y., Zhang, W., Wang, D. Zebrafish xenotransplantation as a tool for in vivo cancer study. Fam Cancer. 14 (3), 487-493 (2015).
  18. Devaud, C., et al. Tissues in different anatomical sites can sculpt and vary the tumor microenvironment to affect responses to therapy. Mol Ther. 22 (1), 18-27 (2014).
  19. Min, Z., Shichang, Z., Chen, X., Yufang, Z., Changqing, Z. 3D-printed dimethyloxallyl glycine delivery scaffolds to improve angiogenesis and osteogenesis. Biomater Sci. 3 (8), 1236-1244 (2015).
  20. Sundaram, S., et al. Tissue-engineered vascular grafts created from human induced pluripotent stem cells. Stem Cells Transl Med. 3 (12), 1535-1543 (2014).
  21. Hori, A., Agata, H., Takaoka, M., Tojo, A., Kagami, H. Effect of Cell Seeding Conditions on the Efficiency of In Vivo Bone Formation. Int J Oral Maxillofac Implants. 31 (1), 232-239 (2016).
  22. Laschke, M. W., Menger, M. D. Prevascularization in tissue engineering: Current concepts and future directions. Biotechnol Adv. , (2015).
  23. Wong, H. K., et al. Novel method to improve vascularization of tissue engineered constructs with biodegradable fibers. Biofabrication. 8 (1), 015004 (2016).
  24. Rouwkema, J., de Boer, J., Van Blitterswijk, C. A. Endothelial cells assemble into a 3-dimensional prevascular network in a bone tissue engineering construct. Tissue Eng. 12 (9), 2685-2693 (2006).
  25. Lokmic, Z., Mitchell, G. M. Engineering the microcirculation. Tissue Eng Part B Rev. 14 (1), 87-103 (2008).
  26. Erol, O. O., Spira, M. New capillary bed formation with a surgically constructed arteriovenous fistula. Surg Forum. 30, 530-531 (1979).
  27. Arkudas, A., et al. Evaluation of angiogenesis of bioactive glass in the arteriovenous loop model. Tissue Eng Part C Methods. 19 (6), 479-486 (2013).
  28. Arkudas, A., et al. Axial prevascularization of porous matrices using an arteriovenous loop promotes survival and differentiation of transplanted autologous osteoblasts. Tissue Eng. 13 (7), 1549-1560 (2007).
  29. Arkudas, A., et al. Composition of fibrin glues significantly influences axial vascularization and degradation in isolation chamber model. Blood Coagul Fibrinolysis. 23 (5), 419-427 (2012).
  30. Arkudas, A., et al. Dose-finding study of fibrin gel-immobilized vascular endothelial growth factor 165 and basic fibroblast growth factor in the arteriovenous loop rat model. Tissue Eng Part A. 15 (9), 2501-2511 (2009).
  31. Arkudas, A., et al. Fibrin gel-immobilized VEGF and bFGF efficiently stimulate angiogenesis in the AV loop model. Mol Med. 13 (9-10), 480-487 (2007).
  32. Buehrer, G., et al. Combination of BMP2 and MSCs significantly increases bone formation in the rat arterio-venous loop model. Tissue Eng Part A. 21 (1-2), 96-105 (2015).
  33. Kneser, U., et al. Engineering of vascularized transplantable bone tissues: induction of axial vascularization in an osteoconductive matrix using an arteriovenous loop. Tissue Eng. 12 (7), 1721-1731 (2006).
  34. Arkudas, A., et al. Combination of extrinsic and intrinsic pathways significantly accelerates axial vascularization of bioartificial tissues. Plast Reconstr Surg. 129 (1), 55e-65e (2012).
  35. Bach, A. D., et al. A new approach to tissue engineering of vascularized skeletal muscle. J Cell Mol Med. 10 (3), 716-726 (2006).
  36. Bitto, F. F., et al. Myogenic differentiation of mesenchymal stem cells in a newly developed neurotised AV-loop model. Biomed Res Int. 2013, 935046 (2013).
  37. Fiegel, H. C., et al. Foetal hepatocyte transplantation in a vascularized AV-Loop transplantation model in the rat. J Cell Mol Med. 14 (1-2), 267-274 (2010).
  38. Polykandriotis, E., et al. The venous graft as an effector of early angiogenesis in a fibrin matrix. Microvasc Res. 75 (1), 25-33 (2008).
  39. Polykandriotis, E., et al. Regression and persistence: remodelling in a tissue engineered axial vascular assembly. J Cell Mol Med. 13 (10), 4166-4175 (2009).
  40. Yuan, Q., et al. PHDs inhibitor DMOG promotes the vascularization process in the AV loop by HIF-1a up-regulation and the preliminary discussion on its kinetics in rat. BMC Biotechnol. 14, 112 (2014).
  41. Dew, L., MacNeil, S., Chong, C. K. Vascularization strategies for tissue engineers. Regen Med. 10 (2), 211-224 (2015).
  42. Kang, Y., Mochizuki, N., Khademhosseini, A., Fukuda, J., Yang, Y. Engineering a vascularized collagen-beta-tricalcium phosphate graft using an electrochemical approach. Acta Biomater. 11, 449-458 (2015).
  43. Novosel, E. C., Kleinhans, C., Kluger, P. J. Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev. 63 (4-5), 300-311 (2011).
  44. Zimmerer, R., Jehn, P., Spalthoff, S., Kokemuller, H., Gellrich, N. C. Prefabrication of vascularized facial bones. Chirurg. 86 (3), 254-258 (2015).
  45. Dunda, S. E., et al. In Vitro and In Vivo Biocompatibility of a Novel, 3-Dimensional Cellulose Matrix Structure. Handchir Mikrochir Plast Chir. 47 (6), 378-383 (2015).
  46. Tanaka, Y., et al. Tissue engineering skin flaps: which vascular carrier, arteriovenous shunt loop or arteriovenous bundle, has more potential for angiogenesis and tissue generation?. Plast Reconstr Surg. 112 (6), 1636-1644 (2003).
  47. Dong, Q. S., et al. Prefabrication of axial vascularized tissue engineering coral bone by an arteriovenous loop: a better model. Mater Sci Eng C Mater Biol Appl. 32 (6), 1536-1541 (2012).
  48. Polykandriotis, E., et al. Prevascularisation strategies in tissue engineering. Handchir Mikrochir Plast Chir. 38 (4), 217-223 (2006).
  49. Mofikoya, B. O., Ugburo, A. O., Bankole, O. B. Does open guide suture technique improve the patency rate in submillimeter rat artery anastomosis?. Handchir Mikrochir Plast Chir. 46 (2), 105-107 (2014).
  50. Manasseri, B., et al. Microsurgical arterovenous loops and biological templates: a novel in vivo chamber for tissue engineering. Microsurgery. 27 (7), 623-629 (2007).
  51. Moimas, S., et al. AAV vector encoding human VEGF165-transduced pectineus muscular flaps increase the formation of new tissue through induction of angiogenesis in an in vivo chamber for tissue engineering: A technique to enhance tissue and vessels in microsurgically engineered tissue. J Tissue Eng. 6, (2015).
  52. Fan, J., et al. Microsurgical techniques used to construct the vascularized and neurotized tissue engineered bone. Biomed Res Int. 2014, 281872 (2014).
  53. Bleiziffer, O., et al. Guanylate-binding protein 1 expression from embryonal endothelial progenitor cells reduces blood vessel density and cellular apoptosis in an axially vascularised tissue-engineered construct. BMC Biotechnol. 12, 94 (2012).
  54. Horch, R. E., et al. Cancer research by means of tissue engineering–is there a rationale?. J Cell Mol Med. 17 (10), 1197-1206 (2013).
  55. Lee, H. Genetically engineered mouse models for drug development and preclinical trials. Biomol Ther (Seoul). 22 (4), 267-274 (2014).
  56. Willey, C. D., Gilbert, A. N., Anderson, J. C., Gillespie, G. Y. Patient-Derived Xenografts as a Model System for Radiation Research). Semin Radiat Oncol. 25 (4), 273-280 (2015).
  57. Guiro, K., Arinzeh, T. L. Bioengineering Models for Breast Cancer Research. Breast Cancer (Auckl). 9 (Suppl 2), 57-70 (2015).
  58. Ghajar, C. M., Bissell, M. J. Tumor engineering: the other face of tissue engineering. Tissue Eng Part A. 16 (7), 2153-2156 (2010).
  59. Boos, A. M., et al. Engineering axially vascularized bone in the sheep arteriovenous-loop model. J Tissue Eng Regen Med. 7 (8), 654-664 (2013).
  60. Weigand, A., et al. Acceleration of vascularized bone tissue-engineered constructs in a large animal model combining intrinsic and extrinsic vascularization. Tissue Eng Part A. 21 (9-10), 1680-1694 (2015).
  61. Horch, R. E., Beier, J. P., Kneser, U., Arkudas, A. Successful human long-term application of in situ bone tissue engineering. J Cell Mol Med. 18 (7), 1478-1485 (2014).
check_url/54676?article_type=t

Play Video

Cite This Article
Weigand, A., Beier, J. P., Arkudas, A., Al-Abboodi, M., Polykandriotis, E., Horch, R. E., Boos, A. M. The Arteriovenous (AV) Loop in a Small Animal Model to Study Angiogenesis and Vascularized Tissue Engineering. J. Vis. Exp. (117), e54676, doi:10.3791/54676 (2016).

View Video