Summary

高脂饮食范式斑马鱼幼体:饲养,实时成像,和食物摄入的量化

Published: October 27, 2016
doi:

Summary

Zebrafish are emerging as a valuable model of dietary lipid processing and metabolic disease. Described are protocols of lipid-rich larval feeds, live imaging of dietary fluorescent lipid analogs, and quantification of food intake. These techniques can be applied to a variety of screening, imaging, and hypothesis driven inquiry techniques.

Abstract

Zebrafish are emerging as a model of dietary lipid processing and metabolic disease. This protocol describes how to feed larval zebrafish a lipid-rich meal, which consists of an emulsion of chicken egg yolk liposomes created by sonicating egg yolk in embryo media. Detailed instructions are provided to screen larvae for egg yolk consumption so that larvae that fail to feed will not confound experimental results. The chicken egg yolk liposomes can be spiked with fluorescent lipid analogs, including fatty acids and cholesterol, enabling both systemic and subcellular visualization of dietary lipid processing. Several methods are described to mount larvae that are conducive to short- and long-term live imaging with both upright and inverted objectives at high and low magnification. Additionally presented is an assay to quantify larval food intake by extracting the lipids of larvae fed fluorescent lipid analogs, spotting the lipids on a thin layer chromatography plate, and quantifying the fluorescence. Finally, critical aspects of the procedures, important controls, options for modifying the protocols to address specific experimental questions, and potential limitations are discussed. These techniques can be applied not only to focused, hypothesis driven inquiries, but also to a variety of screens and live imaging techniques to study dietary lipid metabolism and the control of food intake.

Introduction

通过该肠调节膳食脂质加工机制,肝控制复合脂质合成和脂蛋白代谢和这些器官如何与中枢神经系统中工作,以控制食物摄取是不完全理解。它是生物医学兴趣的肥胖,心血管病,糖尿病和非酒精性脂肪肝疾病的当前流行的光来阐明这个生物学。在细胞培养研究和老鼠提供的大部分我们的膳食脂肪和疾病,和斑马鱼( 斑马鱼 )之间的机械关系的认识正在成为一种理想的模式,以配合这项工作。

斑马鱼也有类似的胃肠(GI)的器官,脂质代谢,脂蛋白运输到高等脊椎动物1,2,发展迅速,并在遗传上容易处理。幼虫斑马鱼的光学清晰度便于在体内研究中,particulař优势胃肠系统作为其胞外环境中的学习( ,胆汁,菌群,内分泌信令)几乎是不可能的模型离体进行。根据,研究相结合的遗传易处理性和有助文章的主体住斑马鱼的成像各种饮食控制高脂肪3,4, -胆固醇5和-carbohydrate饮食6,7),与心血管疾病8的模型,糖尿病9,10,肝脂肪变性11-13,和肥胖14-16正在兴起,以提供代谢见解的主机。

过渡幼虫斑马鱼成代谢研究的一个重要方面是在其他动物模型的斑马鱼和利用斑马鱼的独特优势新颖测定的发展开发的技术的最优化。该协议提出的技术开发和优化的喂养幼虫斑马鱼梨皮D-一顿丰富的,可视化的整个身体饲料脂肪处理亚细胞分辨率,并测量食物的摄入。鸡蛋黄被选择以构成富含脂质的膳食,它包含高含量的脂肪和胆固醇(脂质组合〜鸡蛋黄,其中约5%的胆固醇,60%是甘油三酯,和35%的58%为磷脂的)。鸡蛋黄提供了比典型的商业斑马鱼微丸食物(〜15%的脂质)和优点,即它是与特定的脂肪酸种类的已知百分比的标准化供给更多的脂肪,如斑马鱼的饮食和喂养团没有被跨越实验室17标准化。此外,在蛋黄提供荧光脂质类似物可视运输和膳食脂类18的积聚,图像细胞成分包括既作为活体染料3和通过共价掺入复合脂脂滴,通过薄层色谱法调查代谢(TLC)19 </sup>和高效液相色谱(HPLC)(SAF未发表数据),并提供总食物摄入量20的定量测定。

Protocol

这些协议已批准由卡内基科学研究所机构动物护理和使用委员会(协议编号139)。 1.动物的制备保持在14小时成虫和幼虫在28°C:10小时亮:暗周期。每日两次与壳牌免费卤虫 (拆封,不孵化,开始在14 DPF)和商业微丸饲料成年人。 这些协议的使用6-7 DPF幼虫由AB背景的自然产卵收集优化。协议可以修改为其他年龄和背景的幼虫。不提供外源性食物前6 DPF。 麻醉与?…

Representative Results

当在29-31℃的摇杆喂,大部分健康的幼虫(≥95%),将1小时内食用。一旦消耗蛋黄乳液,幼虫肠道变暗的颜色。非常暗的肠可以在2小时( 图1)中观察到。如果幼虫喂食物或不喂,肠道是明确的。幼虫喂养蛋清表现出扩张肠腔中不颜色变暗。 图1:筛选幼虫食物摄入野生型6…

Discussion

此处所描述的技术允许研究治疗幼虫斑马鱼用富脂质的饲料,在活幼虫可视膳食脂质加工,并量化幼虫的食物摄取。为确保成功,应特别注意考虑到几个关键步骤。商业鸡蛋不同;尽量减少潜在的可变性,我们执行的有机鸡蛋所有检测从没有被富集的Omega-3脂肪酸免费笼鸡。较低的投饲率可能在鱼类观察不到6岁DPF剩余卵黄内生的能源供应,不健康的鱼或鱼妨碍食物的摄入量( 下巴或肠畸形…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors thank Meng-Chieh Shen for images, Jennifer Anderson for providing helpful comments on the manuscript, and members of the Farber laboratory for their contributions in developing these techniques. This study was funded by NIDDK-NIH award RO1DK093399 (S.A.F.), RO1GM63904 (The Zebrafish Functional Genomics Consortium: PI Stephen Ekker and Co-PI S.A.F), and F32DK096786 (J.P.O.). This content is solely the responsibility of the authors and does not necessarily represent the official views of NIH. Additional support was provided by the G. Harold and Leila Y. Mathers Charitable Foundation to the laboratory of S.A.F and the Carnegie Institution for Science endowment.

Materials

Tricaine (ethyl 3-aminobenzoate methanesulofnate salt) Sigma-Aldrich A5040-25G Anesthesia for larval zebrafish
Chicken eggs N/A N/A Organic, cage-free eggs, not enriched for omege-3 fatty acids
Ultrasonic processor 3000 sonicator Misonix, Inc. S-3000 To make egg yolk liposomes
Sonabox acoustic enclosure Misonix, Inc. 432B To make egg yolk liposomes
1/8” tapered microtip Misonix, Inc. 419 To make egg yolk liposomes
Amber vials (4 ml, glass) National Scientific 13-425 Lipid storage; includes vials, open-top caps, and cap septa
Incu-Shaker Mini  Benchmark 1222U12 Incubated shaker for feeds
BODIPY FL C16  Thermo Fisher Scientific D3821 Fluorescent lipid analog; (4,4-Difluoro-5,7-Dimethyl-4-Bora-3a,4a-Diaza-s-Indacene-3-Hexadecanoic Acid)
BODIPY FL C12  Thermo Fisher Scientific D3822 Fluorescent lipid analog; (4,4-Difluoro-5,7-Dimethyl-4-Bora-3a,4a-Diaza-s-Indacene-3-Dodecanoic Acid)
BODIPY FL C5  Thermo Fisher Scientific D3834 Fluorescent lipid analog; (4,4-Difluoro-5,7-Dimethyl-4-Bora-3a,4a-Diaza-s-Indacene-3-Pentanoic Acid)
BODIPY FL C5 Thermo Fisher Scientific D2183 Fluorescent lipid analog; (4,4-Difluoro-5,7-Dimethyl-4-Bora-3a,4a-Diaza-s-Indacene-3-Propionic Acid)
TopFluor cholesterol  Avanti Polar Lipids Inc. 810255 Fluorescent lipid analog; 23-(dipyrrometheneboron difluoride)-24-norcholesterol
Fatty acid-free BSA Sigma-Aldrich A0281-1G For TopFluor cholesterol solubilization
Methyl cellulose Sigma-Aldrich M0387 Mounting media for live larval imaging; 75 x 25 x 1 mm
Low melt agarose Thermo Fisher Scientific BP165-25 Mounting media for live larval imaging; 22 x 30
VWR microscope slides  VWR  16004-422 Mounting larvae for live imaging
Coverslips  Cover Glass 12-544A Mounting larvae for live imaging
Super glue Loctite LOC01-30379 Mounting larvae for live imaging
FluoroDish (glass bottom dish) World Precision Instruments, Inc.  FD35-100 Mounting larvae for live imaging; 35 mm dish, 23 mm glass, 0.17 mm glass thickness  
Confocal microscope Leica Microsytems SP-2, SP-5 Microscope for high magnification live imaging
Stereoscope Nikon SM21500 Microscope for low magnification live imaging
Glass culture tubes  Kimble 73500-13100 Lipid extraction; (13 x 100 mm; 13 ml)
Savant SpeedVac Plus  ThermoQuest SC210A Lipid extraction
Channeled TLC plates Whatman Scientific WC4855-821 Food intake assay; LK5D Silica Gel 150 A, 20 x 20 cm, 250 um thick; Discontinued
Channeled TLC plates Analtech, Inc. 66911 Food intake assay; Direct replacement for Whatman Scientific TLC plates
Typhoon 9410 Variable Mode Imager GE Healthcare 9410 Fluorescent plate reader for food intake assay
ImageQuant software GE Healthcare 29000605 Analysis of food intake assay
5 3/4’ Wide bore, borosilicate disposable pasteur pipets    Kimble 63A53WT Transfering larvae

References

  1. Carten, J. D., Farber, S. A. A new model system swims into focus: using the zebrafish to visualize intestinal metabolism in vivo. Clin Lipidol. 4 (4), 501 (2009).
  2. Babin, P. J., Vernier, J. M. Plasma lipoproteins in fish. J Lipid Res. 30 (4), 467-489 (1989).
  3. Carten, J. D., Bradford, M. K., Farber, S. A. Visualizing digestive organ morphology and function using differential fatty acid metabolism in live zebrafish. Dev Biol. 360 (2), 276-285 (2011).
  4. Marza, E., et al. Developmental expression and nutritional regulation of a zebrafish gene homologous to mammalian microsomal triglyceride transfer protein large subunit. Dev Dyn. 232 (2), 506-518 (2005).
  5. Stoletov, K., et al. Vascular lipid accumulation, lipoprotein oxidation, and macrophage lipid uptake in hypercholesterolemic zebrafish. Circ Res. 104 (8), 952-960 (2009).
  6. Fang, L., et al. Programming effects of high-carbohydrate feeding of larvae on adult glucose metabolism in zebrafish, Danio rerio. Br J Nutr. 111 (5), 808-818 (2014).
  7. Wang, Z., Mao, Y., Cui, T., Tang, D., Wang, X. L. Impact of a combined high cholesterol diet and high glucose environment on vasculature. PLoS One. 8 (12), 81485 (2013).
  8. Fang, L., et al. In vivo visualization and attenuation of oxidized lipid accumulation in hypercholesterolemic zebrafish. J Clin Invest. 121 (12), 4861-4869 (2011).
  9. Curado, S., et al. Conditional targeted cell ablation in zebrafish: a new tool for regeneration studies. Dev Dyn. 236 (4), 1025-1035 (2007).
  10. Pisharath, H., Rhee, J. M., Swanson, M. A., Leach, S. D., Parsons, M. J. Targeted ablation of beta cells in the embryonic zebrafish pancreas using E. coli nitroreductase. Mech Dev. 124 (3), 218-229 (2007).
  11. Passeri, M. J., Cinaroglu, A., Gao, C., Sadler, K. C. Hepatic steatosis in response to acute alcohol exposure in zebrafish requires sterol regulatory element binding protein activation. Hepatology. 49 (2), 443-452 (2009).
  12. Sadler, K. C., Amsterdam, A., Soroka, C., Boyer, J., Hopkins, N. A genetic screen in zebrafish identifies the mutants vps18, nf2 and foie gras as models of liver disease. Development. 132 (15), 3561-3572 (2005).
  13. Matthews, R. P., et al. TNFalpha-dependent hepatic steatosis and liver degeneration caused by mutation of zebrafish S-adenosylhomocysteine hydrolase. Development. 136 (5), 865-875 (2009).
  14. Oka, T., et al. Diet-induced obesity in zebrafish shares common pathophysiological pathways with mammalian obesity. BMC Physiol. 10, 21 (2010).
  15. Chu, C. Y., et al. Overexpression of Akt1 enhances adipogenesis and leads to lipoma formation in zebrafish. PLoS One. 7 (5), 36474 (2012).
  16. Song, Y., Cone, R. D. Creation of a genetic model of obesity in a teleost. FASEB J. 21 (9), 2042-2049 (2007).
  17. Watts, S. A., Powell, M., D’Abramo, L. R. Fundamental approaches to the study of zebrafish nutrition. ILAR J. 53 (2), 144-160 (2012).
  18. Farber, S. A., et al. Genetic analysis of digestive physiology using fluorescent phospholipid reporters. Science. 292 (5520), 1385-1388 (2001).
  19. Miyares, R. L., de Rezende, V. B., Farber, S. A. Zebrafish yolk lipid processing: a tractable tool for the study of vertebrate lipid transport and metabolism. Dis Model Mech. 7 (7), 915-927 (2014).
  20. Otis, J. P., et al. Zebrafish as a model for apolipoprotein biology: comprehensive expression analysis and a role for ApoA-IV in regulating food intake. Dis Model Mech. 8 (3), 295-309 (2015).
  21. Bligh, E., Dyer, W. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911-918 (1959).
  22. Otis, J. P., Farber, S. A. Imaging vertebrate digestive function and lipid metabolism. Drug Discov Today Dis Models. 10 (1), (2013).
  23. Andre, M., et al. Intestinal fatty acid binding protein gene expression reveals the cephalocaudal patterning during zebrafish gut morphogenesis. Int J Dev Biol. 44 (2), 249-252 (2000).
  24. Shimada, Y., Hirano, M., Nishimura, Y., Tanaka, T. A high-throughput fluorescence-based assay system for appetite-regulating gene and drug screening. PLoS One. 7 (12), 52549 (2012).
check_url/54735?article_type=t

Play Video

Cite This Article
Otis, J. P., Farber, S. A. High-fat Feeding Paradigm for Larval Zebrafish: Feeding, Live Imaging, and Quantification of Food Intake. J. Vis. Exp. (116), e54735, doi:10.3791/54735 (2016).

View Video