Summary

鼠标显微注水技术进行有针对性的物质传递到中枢神经系统<i>通过</i>的颈内动脉

Published: January 31, 2017
doi:

Summary

The present protocol describes a mouse microsurgery infusion technique, which effectively delivers substances directly into the brain via the internal carotid artery.

Abstract

Animal models of central nervous system (CNS) diseases and, consequently, blood-brain barrier disruption diseases, require the delivery of exogenous substances into the brain. These exogenous substances may induce injurious impact or constitute therapeutic strategy. The most common delivery methods of exogenous substances into the brain are based on systemic deliveries, such as subcutaneous or intravenous routes. Although commonly used, these approaches have several limitations, including low delivery efficacy into the brain. In contrast, surgical methods that locally deliver substances into the CNS are more specific and prevent the uptake of the exogenous substances by other organs. Several surgical methods for CNS delivery are available; however, they tend to be very traumatic. Here, we describe a mouse infusion microsurgery technique, which effectively delivers substances into the brain via the internal carotid artery, with minimal trauma and no interference with normal CNS functionality.

Introduction

中枢神经系统中的体内模型(CNS)的疾病需要有效递送的外源物质,如药物,病原体,或外来体,进入大脑。因此,一个理想的递送方法应引起创伤小的动物,保护神经元网络的完整性,并在大脑1达到高的物质的浓度。

本地物质递送的若干外科手术方法已被描述,包括内护套,脑内,脑室内和注射或植入2,3,4,5。这些方法,但是,被认为是创伤至CNS,并且只允许感兴趣的物质的量低的施用。此外,已经提出,外源物质可以通过脑脊液6被快速移除</s向上>,和当采用上述技术的低渗透至大脑软组织已经观察到7。全身递送方法,如口服,肺部,皮下,和静脉内途径,在动物模型中比较常用的,尽管它们在物质递送至CNS表现出低效力,由于由其他器官8,9摄取。因此,分娩这些路线需要提升的剂量给药物质,增加副作用和毒性10,11的风险。

这里,我们描述了小鼠输注显微技术,其有效地提供了物质直接进入通过内部颈动脉的大脑。除了靶向递送至CNS,该技术不绕过正常的生理障碍,因此是biologica高度相关的涉及治疗剂或病原体进入大脑的通路升进程。

Protocol

涉及以下协议的程序已被批准的迈阿密机构动物护理和使用委员会的大学(IACUC)。此外,所有的手续正在由协会为实验动物国际评估和认可委员会(AAALAC)认证的工厂进行。 1.小鼠外科手术的准备麻醉小鼠用异氟烷与氧混合,用实验室麻醉系统。在在2升4-5%之间,氧流量设定使用异氟醚/ min的商用机上(见材料表)。动物转移到手术表面,在立体显微镜下,并用鼻?…

Representative Results

这里所描述的小鼠输注显微外科技术是非常灵活,并已用于传递不同的物质直接进入脑,包括肿瘤细胞中的脑转移形成1,12是代表模型的交付。 这种技术也适用于评估在CNS不同病原体的病理方面。在HIV感染的小鼠模型,输液手术被用于直接注射的病毒颗粒进入CCA。我们发现,手术后…

Discussion

这里所描述的输液显微已被证明是在提供各种生物特征外源物质进入中枢神经系统,以防止整个身体1,12不需要的传播非常成功。血 – 脑屏障的破坏为几种中枢神经系统有关的疾病的病理学特征;因此评估外源物质与血脑屏障的关系是非常重要和兴趣。

提出这种手术模型导致有限创伤给动物,并且具有非常低的死亡率<sup…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We would like to thank Dr. Lei Chen (Icahn School of Medicine at Mount Sinai, NY) who first established the use of this model in our laboratory, and to Dr. Gretchen Wolff (German Cancer Research Center, Heidelberg, Germany) for disseminating the technique in our laboratory. Supported in part by HL126559, DA039576, MH098891, MH63022, MH072567, DA027569, and NSC 2015/17/B/NZ7/02985.

Materials

Anesthesia instrument Vetequip 901806
Surgical scissors Fine Science Tool 14558-09
Surgical forceps straight tip Fine Science Tool 00108-11
Surgical forceps angled tip Fine Science Tool 00109-11
Spring scissors Fine Science Tool 15000-08
Nylon suture Braintree Scientific SUT-S 104
Capillary tubing (Micro-Renathane 0.010” x 0.005” per ft.)  Braintree Scientific MRE01050
Closing suture VWR 95057-036
Isoflurane Piramal
2,3,5-Triphenyltetrazolium chloride FisherScientific 50-121-8005

References

  1. Chen, L., Swartz, K. R., Toborek, M. Vessel microport technique for applications in cerebrovascular research. J Neurosci Res. 87 (7), 1718-1727 (2009).
  2. Frisella, W. A., et al. Intracranial injection of recombinant adeno-associated virus improves cognitive function in a murine model of mucopolysaccharidosis type VII. Mol Ther. 3 (3), 351-358 (2001).
  3. Wei, L., Erinjeri, J. P., Rovainen, C. M., Woolsey, T. A. Collateral growth and angiogenesis around cortical stroke. Stroke. 32 (9), 2179-2184 (2001).
  4. Wu, G., et al. Targeted delivery of methotrexate to epidermal growth factor receptor-positive brain tumors by means of cetuximab (IMC-C225) dendrimer bioconjugates. Mol Cancer Ther. 5 (1), 52-59 (2006).
  5. Pignataro, G., Studer, F. E., Wilz, A., Simon, R. P., Boison, D. Neuroprotection in ischemic mouse brain induced by stem cell-derived brain implants. J Cereb Blood Flow Metab. 27 (5), 919-927 (2007).
  6. Sugiyama, Y., Kusuhara, H., Suzuki, H. Kinetic and biochemical analysis of carrier-mediated efflux of drugs through the blood-brain and blood-cerebrospinal fluid barriers: importance in the drug delivery to the brain. J Control Release. 62 (1-2), 179-186 (1999).
  7. Pardridge, W. M. Drug and gene delivery to the brain: the vascular route. Neuron. 36 (4), 555-558 (2002).
  8. Vantyghem, S. A., Postenka, C. O., Chambers, A. F. Estrous cycle influences organ-specific metastasis of B16F10 melanoma cells. Cancer Res. 63 (16), 4763-4765 (2003).
  9. Huang, R. Q., et al. Efficient gene delivery targeted to the brain using a transferrin-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. FASEB J. 21 (4), 1117-1125 (2007).
  10. Liu, R., Martuza, R. L., Rabkin, S. D. Intracarotid delivery of oncolytic HSV vector G47Delta to metastatic breast cancer in the brain. Gene Ther. 12 (8), 647-654 (2005).
  11. Kumar, P., et al. Transvascular delivery of small interfering RNA to the central nervous system. Nature. 448 (7149), 39-43 (2007).
  12. Wrobel, J. K., Wolff, G., Xiao, R., Power, R. F., Toborek, M. Dietary Selenium Supplementation Modulates Growth of Brain Metastatic Tumors and Changes the Expression of Adhesion Molecules in Brain Microvessels. Biol Trace Elem Res. , (2015).
check_url/54804?article_type=t

Play Video

Cite This Article
Leda, A. R., Dygert, L., Bertrand, L., Toborek, M. Mouse Microsurgery Infusion Technique for Targeted Substance Delivery into the CNS via the Internal Carotid Artery. J. Vis. Exp. (119), e54804, doi:10.3791/54804 (2017).

View Video