Summary

Mus mikrokirurgi Infusion Teknik for Målrettet Stof Levering i CNS<i> via</i> Den interne Arteria carotis

Published: January 31, 2017
doi:

Summary

The present protocol describes a mouse microsurgery infusion technique, which effectively delivers substances directly into the brain via the internal carotid artery.

Abstract

Animal models of central nervous system (CNS) diseases and, consequently, blood-brain barrier disruption diseases, require the delivery of exogenous substances into the brain. These exogenous substances may induce injurious impact or constitute therapeutic strategy. The most common delivery methods of exogenous substances into the brain are based on systemic deliveries, such as subcutaneous or intravenous routes. Although commonly used, these approaches have several limitations, including low delivery efficacy into the brain. In contrast, surgical methods that locally deliver substances into the CNS are more specific and prevent the uptake of the exogenous substances by other organs. Several surgical methods for CNS delivery are available; however, they tend to be very traumatic. Here, we describe a mouse infusion microsurgery technique, which effectively delivers substances into the brain via the internal carotid artery, with minimal trauma and no interference with normal CNS functionality.

Introduction

In vivo modeller af centralnervesystemet (CNS) sygdomme kræver en effektiv levering af eksogene stoffer, såsom narkotika, patogener eller exosomer, ind i hjernen. Derfor bør en ideel leveringsmetode forårsage minimal traume for dyret, bevare integriteten af den neuronale netværk, og opnå høje koncentrationer stof i hjernen 1.

Adskillige kirurgiske metoder til lokal stof levering er blevet beskrevet, herunder intra-kappe, intracerebral, og intraventrikulære indsprøjtninger eller implantater 2, 3, 4, 5. Disse tilgange er imidlertid anses traumatisk for CNS, og tillade indgivelse af kun små mængder af stoffet af interesse. Desuden er det blevet foreslået, at exogene stoffer kan fjernes hurtigt ved cerebrospinalvæsken 6 </sop> og en lav dækningsgrad interval til hjernen parenkym er observeret 7, når de ovennævnte teknikker anvendes. Systemisk levering metoder, såsom oral, pulmonal, subkutan og intravenøs ruter, er mere almindeligt anvendt i dyremodeller, selvom de udviser lav effektivitet i at levere stofferne til CNS, på grund af optagelse af andre organer 8, 9. Derfor er disse administrationsveje kræver forhøjede doser af administrerede stoffer, hvilket øger risikoen for bivirkninger og toksicitet 10, 11.

Her beskriver vi en infusion mus mikrokirurgi teknik, som effektivt leverer stoffer direkte ind i hjernen via den interne carotidarterie. Ud over at målrette levering til CNS, er denne teknik ikke omgå normale fysiologiske barrierer og er derfor yderst relevant for Biológical processer involveret i passagerne of Therapeutics eller patogener ind i hjernen.

Protocol

De involverede i følgende protokol procedurer er godkendt af University of Miami Institutional Animal Care og brug Udvalg (IACUC). Derudover er alle procedurer udføres i anlæg, der er godkendt af Foreningen for Vurdering og akkreditering af Laboratory Animal Care International (AAALAC). 1. Fremstilling af mus i Kirurgi Bedøver musen med isofluran blandet med oxygen, under anvendelse af et laboratorium anæstesi system. Brug isofluran ved indstilling mellem 4-5% og ilt flow ved…

Representative Results

Infusionen muse mikrokirurgi teknikken beskrevet her er meget alsidig og har været anvendt til at levere forskellige stoffer direkte ind i hjernen, herunder levering af tumorceller i en repræsentativ model af hjernemetastaser formation 1, 12. Denne teknik er også egnet til at vurdere de patologiske aspekter af forskellige patogener i CNS. I en musemodel for HIV-infe…

Discussion

Infusionen mikrokirurgi beskrevet her har vist sig at være meget vellykket i at levere eksogene stoffer af forskellige biologiske funktioner i CNS, hvilket forhindrer uønsket udbredelse i hele kroppen en, 12. Afbrydelse af blod-hjerne-barrieren er en patologisk kendetegn ved adskillige CNS-relaterede sygdomme; derfor vurdering af forholdet af exogene stoffer med blod-hjerne-barrieren er af stor betydning og interesse.

Denne operati…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We would like to thank Dr. Lei Chen (Icahn School of Medicine at Mount Sinai, NY) who first established the use of this model in our laboratory, and to Dr. Gretchen Wolff (German Cancer Research Center, Heidelberg, Germany) for disseminating the technique in our laboratory. Supported in part by HL126559, DA039576, MH098891, MH63022, MH072567, DA027569, and NSC 2015/17/B/NZ7/02985.

Materials

Anesthesia instrument Vetequip 901806
Surgical scissors Fine Science Tool 14558-09
Surgical forceps straight tip Fine Science Tool 00108-11
Surgical forceps angled tip Fine Science Tool 00109-11
Spring scissors Fine Science Tool 15000-08
Nylon suture Braintree Scientific SUT-S 104
Capillary tubing (Micro-Renathane 0.010” x 0.005” per ft.)  Braintree Scientific MRE01050
Closing suture VWR 95057-036
Isoflurane Piramal
2,3,5-Triphenyltetrazolium chloride FisherScientific 50-121-8005

References

  1. Chen, L., Swartz, K. R., Toborek, M. Vessel microport technique for applications in cerebrovascular research. J Neurosci Res. 87 (7), 1718-1727 (2009).
  2. Frisella, W. A., et al. Intracranial injection of recombinant adeno-associated virus improves cognitive function in a murine model of mucopolysaccharidosis type VII. Mol Ther. 3 (3), 351-358 (2001).
  3. Wei, L., Erinjeri, J. P., Rovainen, C. M., Woolsey, T. A. Collateral growth and angiogenesis around cortical stroke. Stroke. 32 (9), 2179-2184 (2001).
  4. Wu, G., et al. Targeted delivery of methotrexate to epidermal growth factor receptor-positive brain tumors by means of cetuximab (IMC-C225) dendrimer bioconjugates. Mol Cancer Ther. 5 (1), 52-59 (2006).
  5. Pignataro, G., Studer, F. E., Wilz, A., Simon, R. P., Boison, D. Neuroprotection in ischemic mouse brain induced by stem cell-derived brain implants. J Cereb Blood Flow Metab. 27 (5), 919-927 (2007).
  6. Sugiyama, Y., Kusuhara, H., Suzuki, H. Kinetic and biochemical analysis of carrier-mediated efflux of drugs through the blood-brain and blood-cerebrospinal fluid barriers: importance in the drug delivery to the brain. J Control Release. 62 (1-2), 179-186 (1999).
  7. Pardridge, W. M. Drug and gene delivery to the brain: the vascular route. Neuron. 36 (4), 555-558 (2002).
  8. Vantyghem, S. A., Postenka, C. O., Chambers, A. F. Estrous cycle influences organ-specific metastasis of B16F10 melanoma cells. Cancer Res. 63 (16), 4763-4765 (2003).
  9. Huang, R. Q., et al. Efficient gene delivery targeted to the brain using a transferrin-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. FASEB J. 21 (4), 1117-1125 (2007).
  10. Liu, R., Martuza, R. L., Rabkin, S. D. Intracarotid delivery of oncolytic HSV vector G47Delta to metastatic breast cancer in the brain. Gene Ther. 12 (8), 647-654 (2005).
  11. Kumar, P., et al. Transvascular delivery of small interfering RNA to the central nervous system. Nature. 448 (7149), 39-43 (2007).
  12. Wrobel, J. K., Wolff, G., Xiao, R., Power, R. F., Toborek, M. Dietary Selenium Supplementation Modulates Growth of Brain Metastatic Tumors and Changes the Expression of Adhesion Molecules in Brain Microvessels. Biol Trace Elem Res. , (2015).

Play Video

Cite This Article
Leda, A. R., Dygert, L., Bertrand, L., Toborek, M. Mouse Microsurgery Infusion Technique for Targeted Substance Delivery into the CNS via the Internal Carotid Artery. J. Vis. Exp. (119), e54804, doi:10.3791/54804 (2017).

View Video